• 제목/요약/키워드: Failure simulation test

검색결과 324건 처리시간 0.025초

CWFS모델변수 결정을 위한 손상제어시험 및 이를 활용한 취성파괴모델링 (Damage-controlled test to determine the input parameters for CWFS model and its application to simulation of brittle failure)

  • 천대성;박찬;전석원;정용복
    • 한국터널지하공간학회 논문집
    • /
    • 제9권3호
    • /
    • pp.263-273
    • /
    • 2007
  • 일반적으로 고심도에 건설되는 암반구조물의 경우 높은 현지응력과 공동의 굴착에 따른 유도응력으로 인하여 공동 경계면에서 스폴링(spatting)이나 슬래빙(slabbing)과 같은 취성파괴가 발생할 수 있다. Hoek-Brown과 Mohr-Coulomb 파괴기준과 같은 전통적인 파괴기준을 적용한 결과 취성파괴현상과 파괴심도 등을 예측할 수 없는 것으로 나타나 취성파괴를 예측하기 위한 여러 모델이 제안되었으며, 그 중 CWFS 모델이 적합한 것으로 알려져 있다. 본 연구에서는 모형실험에서 얻어진 원형공동주변의 취성파괴현상을 모델링하기위하여 CWFS 모델을 적용하였으며, 입력자료의 산정을 위해 암석의 손상정도와 손상에 따른 물성의 변화를 측정하는 손상제어시험을 수행하였다. CWFS 모델에 의해 예측된 파괴양상을 전통적인 파괴기준에 의한 해석결과 및 모형실험결과와 비교하여 취성파괴모델링의 적용성을 평가하였다.

  • PDF

지하공간 건설에 따른 굴착전면의 파괴모드 (Heading Failure Modes during Underground Excavation)

  • 권오엽;조재완;신종호;최용기;신용석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.409-416
    • /
    • 2005
  • Design analysis for underground spaces requires evaluating stability related to tunnel collapses. A failure mode is one of the critical factors in the conventional methods of stability analysis. Therefore identification of failure modes is essential in securing safe construction in the phase of design analysis, instrumentation planning and implementation of reinforcing measures. In this study failure modes at the tunnel heading in granular soils are investigated using physical model tests and numerical simulation for various tunnel depths and ground surface inclinations. Test results indicated that the effect of depth and inclination of ground surface on a failure mode are significant. It is identified that, with an incase in depth, failure modes become localized in a region close to the tunnel. It is also known that an increase in the inclination of ground surface results in inclined and wide failure modes.

  • PDF

ARIMA AR(1) 모형을 이용한 소프트웨어 미래 고장 시간 예측에 관한 연구 (The Study for Software Future Forecasting Failure Time Using ARIMA AR(1))

  • 김희철;신현철
    • 융합보안논문지
    • /
    • 제8권2호
    • /
    • pp.35-40
    • /
    • 2008
  • 소트프웨어 고장 시간은 테스팅 시간과 관계없이 일정하거나, 단조 증가 혹은 단조 감소 추세를 가지고 있다. 이러한 소프트웨어 신뢰모형들을 분석하기 위한 자료척도로 자료에 대한 추세 검정이 개발되어 있다. 추세 분석에는 산술평균 검정과 라플라스 추세 검정 등이 있다. 추세분석들은 전체적인 자료의 개요의 정보만 제공한다. 본 논문에서는 고장시간을 측정하다가 시간절단이 될 경우에 미래의 고장 시간 예측에 관하여 연구되었다. 고장 시간 예측에 사용된 고장시간자료는 소프트웨어 고장 시간 분포에 널리 사용되는 와이블 분포에서 형상모수가 1이고 척도모수가 0.5를 가진 난수를 발생된 모의 자료를 이용 하였다. 이 자료를 이용하여 시계열 분석에 이용되는 ARIMA 모형 중에서 AR(1) 모형과 모의실험을 통한 예측 방법을 제안하였다. 이 방법에서 ARIMA 모형을 이용한 예측방법이 효율적임을 입증 하였다.

  • PDF

Shearing characteristics of slip zone soils and strain localization analysis of a landslide

  • Liu, Dong;Chen, Xiaoping
    • Geomechanics and Engineering
    • /
    • 제8권1호
    • /
    • pp.33-52
    • /
    • 2015
  • Based on the Mohr-Coulomb failure criterion, a gradient-dependent plastic model that considers the strain-softening behavior is presented in this study. Both triaxial shear tests on conventional specimen and precut-specimen, which were obtained from an ancient landslide, are performed to plot the post-peak stress-strain entire-process curves. According to the test results of the soil strength, which reduces from peak to residual strength, the Mohr-Coulomb criterion that considers strain-softening under gradient plastic theory is deduced, where strength reduction depends on the hardening parameter and the Laplacian thereof. The validity of the model is evaluated by the simulation of the results of triaxial shear test, and the computed and measured curves are consistent and independent of the adopted mesh. Finally, a progressive failure of the ancient landslide, which was triggered by slide of the toe, is simulated using this model, and the effects of the strain-softening process on the landslide stability are discussed.

Numerical study on the influence of mesomechanical properties on macroscopic fracture of concrete

  • Zhu, W.C.;Tang, C.A.;Wang, S.Y.
    • Structural Engineering and Mechanics
    • /
    • 제19권5호
    • /
    • pp.519-533
    • /
    • 2005
  • The numerical simulations on the influence of mesoscopic structures on the macroscopic strength and fracture characteristics are carried out based on that the concrete is assumed to be a three-phase composite composed of matrix (mortar), aggregate and bond between them by using a numerical code named MFPA. The finite element program is employed as the basic stress analysis tool when the elastic damage mechanics is used to describe the constitutive law of meso-level element and the maximum tensile strain criterion and Mohr-Coulomb criterion are utilized as damage threshold. It can be found from the numerical results that the bond between matrix and aggregate has a significant effect on the macroscopic mechanical performance of concrete.

상사법칙이 적용된 철근콘크리트 기둥 축소모형의 지진 취약도 분석 (Fragility Analysis of A Scaled Model of Reinforced Concrete Column in Accordance with Similitude Law)

  • 박동욱;전법규;김남식;박자민;조재열
    • 한국지진공학회논문집
    • /
    • 제21권2호
    • /
    • pp.87-93
    • /
    • 2017
  • Many studies are conducted in several fields for fragility analysis of structures or elements which is a probabilistic seismic safety analysis in consideration with uncertainty of seismic loading. It is hard to directly conduct fragility analysis for an infrastructure with social importance due to its size. Therefore, a fragility analysis for an infrastructure mainly conducted in element level or conducted with scaled model built in accordance with similarity law. In this article, fragility analysis for prototype and scaled model of reinforced concrete column was conducted with numerical models which had been updated by the results of shaking table test and pseudo dynamic test. As a result, response stress from the numerical analysis result of prototype model was higher than that from scaled model due to different stiffness ratios between steel and concrete. However, the probability of failure for scaled model was higher than that for prototype model because failure criteria for scaled model was down due to similarity law. Also it was evaluated that probability of failure by using log normal standard deviation of response stresses by spectrum matched accelerograms was more reliable than probability of failure by using existing coefficient of variation normally used.

모사시편 시험을 통한 감육결함 국부손상기준 개발 (Development of Local Failure Criteria for Well Thinning Defect by Simulated Specimen Tests)

  • 김진원;김도형;박치용;이성호
    • 대한기계학회논문집A
    • /
    • 제31권3호
    • /
    • pp.304-312
    • /
    • 2007
  • The objective of this study is to develop a local failure criterion for a wall thinning defect of piping components. For this purpose, a series of tensile tests was performed using several types of simulated specimens with different stress states, including smooth round bar, notched round bar (five different notch radii), and grooved plate (three different groove radii). In addition, finite element (FE) simulations were performed on the simulated specimen tests and the results were compared with the test results. From the comparisons, the equivalent stress and strain corresponding to maximum load and final failure of notched specimens were proposed as failure criteria under tensile load. The criteria were verified by employing them to the estimation of failure of grooved plate specimens that simulate the wall thinning defect. It showed that the proposed criteria accurately estimate the maximum load and final failure of grooved plate specimen tests.

Numerical simulation of the effect of bedding layer geometrical properties on the shear failure mechanism using PFC3D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • 제22권5호
    • /
    • pp.611-620
    • /
    • 2018
  • In this research the effect of bedding layer angle and bedding layer thickness on the shear failure mechanism of concrete has been investigated using PFC3D. For this purpose, firstly calibration of PFC3d was performed using Brazilian tensile strength. Secondly shear test was performed on the bedding layer. Thickness of layers were 5 mm, 10 mm and 20 mm. in each thickness layer, layer angles changes from $0^{\circ}$ to $90^{\circ}$ with increment of $25^{\circ}$. Totally 15 model were simulated and tested by loading rate of 0.016 mm/s. The results shows that when layer angle is less than $50^{\circ}$, tensile cracks initiates between the layers and propagate till coalesce with model boundary. Its trace is too high. With increasing the layer angle, less layer mobilize in failure process. Also the failure trace is very short. It's to be note that number of cracks decrease with increasing the layer thickness. The minimum shear test strength was occurred when layer angle is more than $50^{\circ}$. The maximum value occurred in $0^{\circ}$. Also, the shear test tensile strength was increased by increasing the layer thickness.

송전용 자기재 애자의 시멘트 변위 응력에 관한 시뮬레이션 (A Simulation on the Displacement Stress of Cement in Porcelain Insulators for Transmission Line)

  • 한세원;조한구;우병철;정길조;이동일;최인혁
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.476-479
    • /
    • 2002
  • The ageing cause in many porcelain suspension insulators which occur on transmission and distribution line with dead-end stings is mechanical stress in interface between porcelain and cement materials. It is known that the principal mechanical stress which give electrical failure is the results of the displacement is due to cement growth. We studied the effect of cement displacement resulting environmental ageing parameters on porcelain insulator mechanical properties for transmission line by simulation (ANSYS/NASTRAN program) and test methods. These simulation analysis and experimental results show that cement volume growth affects severely to be mechanical failure ageing.

  • PDF

Simulation of the effect of inclusions length and angle on the failure behavior of concrete structure under 3D compressive test: Experimental test and numerical simulation

  • Mohammad Saeed, Amini;Vahab, Sarfarazi;Kaveh, Asgari;Xiao, Wang;Mojtaba Moheb, Hoori
    • Steel and Composite Structures
    • /
    • 제46권1호
    • /
    • pp.53-73
    • /
    • 2023
  • Man-made structure materials like concrete usually contain inclusions. These inclusions affect the mechanical properties of concrete. In this investigation, the influence of inclusion length and inclination angle on three-dimensional failure mechanism of concrete under uniaxial compression were performed using experimental test and numerical simulation. Approach of acoustic emission were jointly used to analyze the damage and fracture process. Besides, by combining the stress-strain behavior, quantitative determination of the thresholds of crack stress were done. concrete specimens with dimensions of 120 mm × 150 mm × 100 mm were provided. One and two holes filled by gypsum are incorporated in concrete samples. To build the inclusion, firstly cylinder steel tube was pre-inserting into the concrete and removing them after the initial hardening of the specimen. Secondly, the gypsum was poured into the holes. Tensile strengths of concrete and gypsum were 2.45 MPa and 1.5 MPa, respectively. The angle bertween inclusions and axial loadind ary from 0 to 90 with increases of 30. The length of inclusion vary from 25 mm to 100 mm with increases of 25 mm. Diameter of the hole was 20 mm. Entirely 20 various models were examined under uniaxial test. Simultaneous with experimental tests, numerical simulation (Particle flow code in two dimension) were carried out on the numerical models containing the inclusions. The numerical model were calibrated firstly by experimental outputs and then failure behavior of models containing inclusions have been investigated. The angle bertween inclusions and axial loadind vary from 0 to 90 with increases of 15. The length of inclusion vary from 25 mm to 100 mm with increases of 25 mm. Entirely 32 various models were examined under uniaxial test. Loading rate was 0.05 mm/sec. The results indicated that when inclusion has occupied 100% of sample thickness, two tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. When inclusion has occupied 75% of sample thickness, four tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. When inclusions have occupied 50% and 25% of sample thickness, four tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. Also the inclusion was failed by one tensile crack. The compressive strength of samples decease with the decreases of the inclusions length, and inclusion angle had some effects on that. Failure of concrete is mostly due to the tensile crack. The behavior of crack, was affected by the inclusion length and inclusion number.