• Title/Summary/Keyword: Failure Surface

Search Result 1,887, Processing Time 0.025 seconds

Behavior Analysis of Concrete Structure under Blast Loading : (II) Blast Loading Response of Ultra High Strength Concrete and Reactive Powder Concrete Slabs (폭발하중을 받는 콘크리트 구조물의 실험적 거동분석 : (II) 초고강도 콘크리트 및 RPC 슬래브의 실험결과)

  • Yi, Na Hyun;Kim, Sung Bae;Kim, Jang-Ho Jay;Cho, Yun Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.565-575
    • /
    • 2009
  • In recent years, there have been numerous explosion-related accidents due to military and terrorist activities. Such incidents caused not only damages to structures but also human casualties, especially in urban areas. To protect structures and save human lives against explosion accidents, better understanding of the explosion effect on structures is needed. In an explosion, the blast load is applied to concrete structures as an impulsive load of extremely short duration with very high pressure and heat. Generally, concrete is known to have a relatively high blast resistance compared to other construction materials. However, normal strength concrete structures require higher strength to improve their resistance against impact and blast loads. Therefore, a new material with high-energy absorption capacity and high resistance to damage is needed for blast resistance design. Recently, Ultra High Strength Concrete(UHSC) and Reactive Powder Concrete(RPC) have been actively developed to significantly improve concrete strength. UHSC and RPC, can improve concrete strength, reduce member size and weight, and improve workability. High strength concrete are used to improve earthquake resistance and increase height and bridge span. Also, UHSC and RPC, can be implemented for blast resistance design of infrastructure susceptible to terror or impact such as 9.11 terror attack. Therefore, in this study, the blast tests are performed to investigate the behavior of UHSC and RPC slabs under blast loading. Blast wave characteristics including incident and reflected pressures as well as maximum and residual displacements and strains in steel and concrete surface are measured. Also, blast damages and failure modes were recorded for each specimen. From these tests, UHSC and RPC have shown to better blast explosions resistance compare to normal strength concrete.

A Study on the 3rd Party Liability for the Damages Caused by the Aircraft - With respect to the 2009 Montreal Conventions (New Rome Convention) - (항공기에 의한 제3자 피해보상에 관한 고찰 - 2009 몬트리올 신로마협약을 중심으로 -)

  • Hong, Soon-Kil
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.24 no.2
    • /
    • pp.3-17
    • /
    • 2009
  • The Rome Convention System (1933, 1952, 1978) which deal the third party lability relating to damage caused by aircraft to third parties on the surface have not been so effective and successful like the Warsaw Convention System. This paper briefs the development of the Rome Convention System and the reasons of their failure which are the low level of the limit of liability and non-parties of major civil aviation states such as the United States, the United Kingdom, Japan, Germany and etc. The Diplomatic Conference hosted by ICAO at Montreal during April 20 to May 2 has successfully produced two Conventions; One is Convention on Compensation for Damage Caused by Aircraft to Third Parties (General Risk Convention), the other is Convention on Compensation for Damage to Third Parties, Resulting from Acts of Unlawful Interference involving Aircraft (Unlawful Interference Convention). The major contents and some problems of these two Conventions are reviewed in comparison with the exisiting Rome Convention System and other legal system. Particularly, the entrance into force of the Unlawful Interference Convention may take some time, at least more than 5 years, due to the realistic problems arising from the operation of International Civil Aviation Fund.

  • PDF

Ring-shear Apparatus for Estimating the Mobility of Debris Flow and Its Application (토석류 유동성 평가를 위한 링 전단시험장치 개발 및 활용)

  • Jeong, Sueng-Won;Fukuoka, Hiroshi;Song, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.181-194
    • /
    • 2013
  • Landslides are known as gravitational mass movements that can carry the flow materials ranging in size from clay to boulders. The various types of landslides are differentiated by rate and depositional features. Indeed, flow characteristics are observed from very slow-moving landslides (e.g., mud slide and mud flow) to very fast-moving landslides (e.g., debris avalanches and debris flows). From a geomechanical point of view, shear-rate-dependent shear strength should be examined in landslides. This paper presents the design of advanced ring-shear apparatus to measure the undrained shear strength of debris flow materials in Korea. As updated from conventional ring-shear apparatus, this apparatus can evaluate the shear strength under different conditions of saturation, drainage and consolidation. We also briefly discussed on the ring shear apparatus for enforcing sealing and rotation control. For the materials with sands and gravels, an undrained ring-shear test was carried out simulating the undrained loading process that takes place in the pre-existing slip surface. We have observed typical evolution of shear strength that found in the literature. This paper presents the research background and expected results from the ring-shear apparatus. At high shear speed, a temporary liquefaction and grain-crushing occurred in the sliding zone may take an important role in the long-runout landslide motion. Strength in rheology can be also determined in post-failure dynamics using ring-shear apparatus and be utilized in debris flow mobility.

A study on slope protection works in cemetery establishment area ( I ) - The case of a public cemetery in Kangnung city - (묘지 조성사업지의 비탈면 보호공법에 관한 연구( I ) - 강릉시 시범 공설묘지 조성사업을 중심으로 -)

  • Chun, Kun-Woo;Yoo, Nam-Jae;Cha, Du-Song;Yi, Myong-Jong;Park, Wan-Geun;Han, Sang-Kyun
    • Journal of Forest and Environmental Science
    • /
    • v.16 no.1
    • /
    • pp.17-33
    • /
    • 2000
  • The construction of a public cemetery in Kangnung city includes terraced graveyard with cutting or banking in mountain which has severe altitude differences with a slope of $30^{\circ}$. Therefore, there are scattered cutting and banking sections with vertical height more than 15m. Especially, if the slope failure or the loss of a graveyard happens after graveyard establishment due to surface flow and inflow around. it is difficult to repair, causing serious public censure. Accordingly, revegetation works were examined that need protection of slope. The specific content of the study was the selection of slopes requiring special care through blueprint and field investigation. the measurement of the physical property of slope and the situation of vegetative growth, the investigation of vegetation in slopes and the selection of vegetation. and the analysis of soil condition of slopes and the physical condition of slope sediment. On the basis of investigations some alternatives were proposed.

  • PDF

The Stability Analysis of Near Parallel Tunnels Pillar at Multi-layered Soil with Shallow Depth by Numerical Analysis (수치해석에 의한 저토피 다층지반에서 근접 병설터널 필라의 안정성 분석)

  • Lim, Hyungmin;Son, Kwangrok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.53-62
    • /
    • 2014
  • In Korea, in general, separation distance between existing parallel tunnels was set at two to five times as distant as the diameter of the tunnels according to ground conditions. Recently, however, actual applicability of closely spaced parallel tunnels whose distance between tunnel centers was shorter than the diameter has increased due to environmental damages resulting from massive cutting, restriction in purchase of required land, and maintenance of linear continuity. In particular, when the pillar width of tunnel decreases, the safety of pillars affects behaviors of the tunnel and therefore the need for diverse relevant studies has emerged. However, research so far has been largely confined to analysis of behavior characteristics of pillars, or parameters affecting design, and actually applicable and quantitative data have not been presented. Accordingly, in order to present a stability evaluation method which may maximally reflect construction conditions of spots, this study reflected topographical and stratigraphic characteristics of the portal part with the highest closeness between the tunnels, simulated multi-layer conditions with rock mass and complete weathering, and assessed the degree of effect the stability of pillars had on the entire tunnels through numerical analysis according to changes in pillar width by ground strength. This study also presented composite analysis result on ground surface settlement rates, interference volume rates, and average strength to stress and a formula, which may be applicable to actual work, to evaluate safety rates of closely spaced parallel tunnel pillars and minimum pillar width by ground strength based on failure criteria by Hoek-Brown (1980).

The Study on Improvement Methods for The Seismic Performance of Port Structures (항만 구조물의 내진성능 향상을 위한 배면 지반의 보강방안에 관한 연구)

  • Kim, Byung-Il;Hong, Kang-Han;Kim, Jin-Hae;Han, Sang-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.151-165
    • /
    • 2019
  • In this study, the four types of improvement methods (increase self weight and reducing sliding force etc.) were proposed depending on install location with compaction grouting to improve seismic performance of existing port structure and optimal methods by analyzing the effects of improvement (stability, constructability and economy) by theoretical and numerical methods. From the dynamic time history analysis for artificial seismic waves, the results indicated that the horizontal displacement after improvement decreased compared to before improvement, however the displacement reduction effect among improvement methods was not significantly different. Slope stability based on the strength reduction method and the limit equilibrium analysis method, it is confirmed that the passive pile method is more safe than other methods. It is due to the shear strength at the failure surface is increased. In addition, the analysis of constructability and economy showed that the reduction of earth pressure method (type 02) and the passive pile method (type 03) are excellent. However, in the case of the passive pile method is concerned that there is a shortage of design cases and the efficiency can be reduced depend on various constraints such as ground conditions.

An Experimental Study on the Detection of Loosened Areas in a Ground cavity Using a Micro Penetration Test (초소형 관입시험기를 이용한 지반공동 주변지반의 이완영역탐지를 위한 실험적 연구)

  • Kim, Ho-Youn;Kim, Young-Ho;Park, Yoon-Suk;You, Seung-Kyong;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.299-306
    • /
    • 2019
  • In this study, a model experiment that simulates the behaviour of the ground composed of several compacted layer was intended to measure the loosened area in the event of a ground cavity through a LAD (Loosened area detector). It was confirmed that the size of the cone diameter was affected by the ground composed of fine grain + granulated soil layered through the model soil. In order to select the appropriate cone type, a scale effect experiment was conducted. From the test results, a micro-cone was chosen for the most suitable indoor model experiment. In the case of applying LAD in this study, the loosening condition of the ground was determined by the rapid change in penetration resistance caused by the difference in the boundary surface and relative density due to the compaction of the ground for indoor model testing. The range of loosened area occurring in the cavity was estimated through the penetration resistance characteristics on the ground, and the failure area was identified through the reduction rate of penetration resistance in the loosening area.

Behavior of Concrete Bridge Deck Using Hybrid Reinforcement System (Hybrid Reinforcement System을 이용한 콘크리트 교량상판 슬래브의 거동)

  • Park Sang-Yeol;Cho Keun-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.451-458
    • /
    • 2004
  • This study describes the basic concept and the applicability of Hybrid Reinforcement System using conventional steel reinforcing bars and Fiber Reinforced Polymer bars. The concrete bridge decks are assumed to be supported by beams and reinforced with two layers of reinforcing bars. In concrete bridge deck using HRS, the top tensile force for negative moment zone on beam supports is assumed to be resisted by FRP reinforcing bars, and the bottom tensile force for positive moment zone in the middle of hem supports is assumed to be resisted by conventional steel reinforcing bars, respectively. The FRP reinforcing bars are non-corrosive. Thus, the steel reinforcement is as far away as possible from the top surface of the deck and protected from intrusion of corrosive agent. HRS concrete bridge deck has sufficient ductility at ultimate state as the following reasons; 1) FRP bars have lower elastic modulus and higher ultimate strain than steel re-bars have, 2) FRP bars have lower ultimate strain if provided higher reinforcement ratio, 3) ultimate strain of FRP bars can be reduced if FRP bars are unbonded. Test results showed that FRP and HRS concrete slabs are not failed by FRP bar rupture, but failed by concrete compression in the range of ordinary reinforcement ratio. Therefore, in continuous concrete bridge deck using HRS, steel reinforcing bars for positive moment yield and form plastic hinge first and compressive concrete fail in the bottom of supports or in the top of the middle of supports last. Thus, bridge deck consumes significant inelastic strain energy before its failure.

Comparison of the fatigue limit of fiber-reinforced composites and stainless steel wires when attached to the tooth surface for anchorage reinforcement (고정원 강화를 위해 치면에 부착한 fiber-reinforced composite과 스테인리스강 와이어의 피로한도 비교)

  • Kim, Moon-Jung;Park, Soo-Byung
    • The korean journal of orthodontics
    • /
    • v.35 no.4 s.111
    • /
    • pp.302-311
    • /
    • 2005
  • This study was performed to compare the fatigue limit of stainless steel wires and Fiber-reinforced composites (FRC) under conditions of permitting physiologic tooth movement. and to evaluate the clinical value of FRCs which was used to reinforce the anchorage unit. The stainless steel wire groups were divided into round and rectangular wire groups. The FRC groups were divided into uni-directional and woven groups, with resin coating and without resin coating in the Proximal area After the number of cycles to failure of each of the 6 groups were measured within the $5{\times}10^5\;cycle$ fatigue limit simulating the orthodontic treatment period. the fatigue limit of each group was compared with each other The findings of this study were as follows. In stainless steel wires, the fatigue limit of rectangular wires were higher than that of round wires. But there was no statistically significant difference (p>0.05). In FRCs with resin coating and without resin coating in the interproximal area, the fatigue limit of uni-directional type was higher than that of the woven type (p<0.05). In uni-directional and woven type FRCs, the fatigue limit of FRC with resin coating in the interproximal area was higher thar that of FRC without resin coating (P<0.05) As the FRCs and stainless steel wires did not fracture until the $5{\times}10^5\;cycle$ fatigue limit which clinically is useful. it is sufficient to use FRC and stainless steel wire for reinforcing anchorage. When esthetics is important and the attachment of additional devices are necessary. it seems sufficient to use FRC as anchorage reinforcement.

A Study of the Management of Groundwater Reservoir by Numerical Three Dimensional Flow Model (3차원 흐름모델을 이용한 지하저수지의 관리에 대한 연구)

  • 신방웅;김희성
    • The Journal of Engineering Geology
    • /
    • v.5 no.3
    • /
    • pp.289-300
    • /
    • 1995
  • At the initial stage of the underground reservoir design one should thoroughly consider surface and subsurface hydrology, hydrogeologic characteristics of aquifer system, and the function of cut - off wall because it is linked to the effective management. In this study, three dimensional finite difference model was applied to analyse the function of Ian underground reservoir at Kyungbuk Province. The steady and unsteady state conditions after construction of the underground dam were simulated through the model, and from these results the groundwater budget and the safe yield were determined. The model simulation indicates the infiltration of irrigation water to be one of the major factors of seasonal fluctuation of groundwater level. The recharge rates of irrigation water were estimated as 4.3mm/d during May and June, and 1.7mm/d during July and Agust. Groundwater recharge from the watershed area estimated to about $0.04m^3/s$, almost consistent through the year. In 1984, groundwater discharge through the transverse section of the dam was $0.002m^3/s$ and the optimum yield for two momths(July and Aguest)was $254000m^3$, however, the discharge became $0.013m^3/s$ in1993, implying the failure of cut -off function. without appropaiate of the cut - off wall, optiumum yield during the irrigaton period would be $93, 000m^3$.

  • PDF