• Title/Summary/Keyword: Factory

Search Result 3,074, Processing Time 0.025 seconds

Implementation of a Gesture Recognition Signage Platform for Factory Work Environments

  • Rho, Jungkyu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.171-176
    • /
    • 2020
  • This paper presents an implementation of a gesture recognition platform that can be used in a factory workplaces. The platform consists of signages that display worker's job orders and a control center that is used to manage work orders for factory workers. Each worker does not need to bring work order documents and can browse the assigned work orders on the signage at his/her workplace. The contents of signage can be controlled by worker's hand and arm gestures. Gestures are extracted from body movement tracked by 3D depth camera and converted to the commandsthat control displayed content of the signage. Using the control center, the factory manager can assign tasks to each worker, upload work order documents to the system, and see each worker's progress. The implementation has been applied experimentally to a machining factory workplace. This flatform provides convenience for factory workers when they are working at workplaces, improves security of techincal documents, but can also be used to build smart factories.

Factory Planner Application for Planning and Scheduling of Factory on Supply Chain (Supply Chain상에서 공장내의 생산 계획 및 스케줄링을 위한 Factory Planner 적용)

  • 오형술;박경종;이충수
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.4
    • /
    • pp.8-15
    • /
    • 2002
  • This paper proposes a case study to treat planning and scheduling in factory of supply chain. In fact, the planning and the scheduling of a factory are not easily solved because of constraints of facility resources, material requirements, allowed planning times, and so on. However many packages are developed by vendors in Advanced Planning and Scheduling(APS) aspects to solve these problems. Therefore, in this paper, we analyze problems of an electronic company and apply the tool, Factory Planner(FP), to solve problems. The FP, which was developed by if technologies, is very popular planning and scheduling tool in the world. Also, the tool is successfully applied to many fields.

The Development of a Hybrid Financial Product Factory (금융 프로덕트 팩토리를 위한 복합상품 설계시스템의 개발)

  • 이성하;최성철;주정은;구상회
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2003.11a
    • /
    • pp.707-720
    • /
    • 2003
  • Product factory is a real-time financial product design system for the Internet customers. The hybrid product is a product taking combined characteristics of two different products. Hybrid product factory is a product factory that designs hybrid products from two different products based on both business rules and customer requirements. Though the importance of product factory is emphasized in the industry, there has not been much research peformed regarding product factory. In this research, we developed a product factory system that designs hybrid products. To design a hybrid product, it is necessary to have a method to combine attributes and values of two different products, and a method to control the combining operations to properly reflect business requirements. In this research, we developed four different combining operators and business rule representations. In addition, to prove the effectiveness of this methods, we implemented a prototypical system and demonstrated on cases regarding financial loan products.

  • PDF

Developing a service platform for ubiquitous factory application;models and approaches (Ubiquitous Factory 구현을 위한 서비스 Platform 개발에 관한 연구)

  • Lee, Joo-Hwan;Yoo, Kwang-Uk;Yun, Yong-Jin
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.551-555
    • /
    • 2006
  • Ubiquitous technology(UT)의 발전과 더불어 특성 산업에 가시적인 적용 성과가 나타남으로써, 전통적인 제조업에서도 ubiquitous 환경 구현 및 제조기술(MT: Manufacturing Technology)과의 융합을 통한 제조혁신의 필요성이 대두되고 있다. 따라서, 본 연구에서는 ubiquitous factory 구현을 위한 체계적인 서비스 개발을 위해서, factory에 적용할 수 있는 특정 서비스 platform 개발을 목적으로 한다. 이를 위해, 서비스 개발 platform과 관련된 연구와 ubiquitous 서비스 개발 방법론 등을 분석하여 factory 현장에 바로 적용할 수 있는 platform을 개발하였다. 개발된 platform을 검증하기 위해 사례분석을 통해 연관분석을 실시함으로써 본 연구의 타당성을 검토하였다. 본 연구에서 개발된 platform은 ubiquitous factory를 구현하는데 활용될 예정이며, 향후 적용을 통한 개선사항을 도출하여 제조혁신을 위한 방법론으로 정립할 예정이다.

  • PDF

Application of Smart Factory Model in Vietnamese Enterprises: Challenges and Solutions

  • Quoc Cuong Nguyen;Hoang Tuan Nguyen;Jaesang Cha
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.265-275
    • /
    • 2024
  • Smart factory is a remarkable development from traditional manufacturing systems to data-based smart manufacturing systems that can connect and process data continuously, collected from machines, production equipment to production and business processes, capable of supporting workers in making decisions or performing work automatically. Smart factory is the key and center of the fourth industrial revolution, combining improvements in traditional manufacturing activities with digital technology to help factories achieve greater efficiency, contributing to increased revenue and reduce operating costs for businesses. Besides, the importance of smart factories is to make production more quality, efficient, competitive and sustainable. Businesses in Vietnam are in the process of learning and applying smart factory models. However, the number of businesses applying the pine factory model is still limited due to many barriers and difficulties. Therefore, in this paper we conduct a survey to assess the needs and current situation of businesses in applying smart factories and propose some specific solutions to develop and promote application of smart factory model in Vietnamese businesses.

A Comparative Case Study on Taiwanese and Korean Semiconductor Companies' Background and Process of Direct Investment in China: Focused on Investment of Factory Facility (한국과 대만 반도체기업들의 중국내 직접투자 배경과 과정에 대한 비교사례연구: 공장설립 투자를 중심으로)

  • Kwun, Young-Hwa
    • International Area Studies Review
    • /
    • v.20 no.2
    • /
    • pp.85-111
    • /
    • 2016
  • Global semiconductor companies is investing enormous capital worldwide. And direct investment in China is increasing greatly these days, Especially, global semiconductor companies are setting up a factory in China due to expanding market rather than utilizing low labor cost. Therefore, this study is trying to analyze the background and process of direct investment from global Korean and Taiwanese semiconductor companies in China. Firstly, In 1996, Samsung semiconductor established a back end process factory in Suzhou. And in 2014, Samsung semiconductor set up a front and back end factory in Xian. Secondly, In 2006, SK Hynix built a front and back end factory in Wuxi. and SK Hynix set up a back end factory named Hitech semiconductor with Chinese company in 2009. Later in 2015, SK Hynix established a back end factory in Chongqing. Thirdly, In 2004, TSMC started to operate a factory in Shanghai, and in 2018, TSMC is going to establish a factory in Nanjing. Lastly, UMC bought a stock to produce product in Chinese local company named HJT, and at the end of 2016, UMC is going to finish building a factory in Xiamen. As a result, it was proved that most companies hoped to expand the chinese market by setting up a factory in china. In addition, Samsung expected to avoid a risk by setting up a factory in china, and SK Hynix wanted to avoid a countervailing duty by setting up a factory in china. Based on the result of this study, this study indicates some implications for other semiconductor companies which are very helpful for their future foreign direct investment.

An Agent Gaming and Genetic Algorithm Hybrid Method for Factory Location Setting and Factory/Supplier Selection Problems

  • Yang, Feng-Cheng;Kao, Shih-Lin
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.4
    • /
    • pp.228-238
    • /
    • 2009
  • This paper first presents two supply chain design problems: 1) a factory location setting and factory selection problem, and 2) a factory location setting and factory/supplier selection problem. The first involves a number of location known retailers choosing one factory to supply their demands from a number of factories whose locations are to be determined. The goal is to minimize the transportation and manufacturing cost to satisfy the demands. The problem is then augmented into the second problem, where the procurement cost of the raw materials from a chosen material supplier (from a number of suppliers) is considered for each factory. Economic beneficial is taken into account in the cost evaluation. Therefore, the partner selections will influence the cost of the supply chain significantly. To solve these problems, an agent gaming and genetic algorithm hybrid method (AGGAHM) is proposed. The AGGAHM consecutively and alternatively enable and disable the advancement of agent gaming and the evolution of genetic computation. Computation results on solving a number of examples by the AGGAHM were compared with those from methods of a general genetic algorithm and a mutual frozen genetic algorithm. Results showed that the AGGAHM outperforms the methods solely using genetic algorithms. In addition, various parameter settings are tested and discussed to facilitate the supply chain designs.

Implementation of Face Recognition Applications for Factory Work Management

  • Rho, Jungkyu;Shin, Woochang
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.246-252
    • /
    • 2020
  • Facial recognition is a biometric technology that is used in various fields such as user authentication and identification of human characteristics. Face recognition applications are practically used in various fields, but very few applications have been developed to improve the factory work environment. We implemented applications that uses face recognition to identify a specific employee in a factory .work environment and provide customized information for each employee. Factory workers need documents describing the work in order to do their assigned work. Factory managers can use our application to register documents needed for each worker, and workers can view the documents assigned to them. Each worker is identified using face recognition, and by tracking the worker's face during work, it is possible to know that the worker is in the workplace. In addition, as a mobile app for workers is provided, workers can view the contents using a tablet, and we have defined a simple communication protocol to exchange information between our applications. We demonstrated the applications in a factory work environment and found several improvements were required for practical use. We expect these results can be used to improve factory work environments.

The Efficient Management of Digital Virtual Factory Objects Using Classification and Coding System (분류 및 코딩시스템을 이용한 디지털 가상공장 객체의 효율적 관리)

  • Kim, Yu-Seok;Kang, Hyoung-Seok;Noh, Sang-Do
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.5
    • /
    • pp.382-394
    • /
    • 2007
  • Nowadays, manufacturing industries undergo constantly growing pressures for global competitions, and they must shorten time and cost in product development and production to response varied customers' requirements. Digital virtual manufacturing is a technology that can facilitate effective product development and agile production by using digital models representing the physical and logical schema and the behavior of real manufacturing systems including products, processes, manufacturing resources and plants. For successful applications of this technology, a digital virtual factory as a well-designed and integrated environment is essential. In this paper, we developed a new classification and coding system for effective managements of digital virtual factory objects, and implement a supporting application to verify and apply it. Furthermore, a digital virtual factory layout management system based on the classification and coding system has developed using XML, Visual Basic.NET and FactoryCAD. By some case studies for automotive general assembly shops of a Korean automotive company, efficient management of factory objects and reduction of time and cost in digital virtual factory constructions are possible.

Factory Production Management of Modular Units Using MFD 2019 (MFD 2019를 활용한 모듈러 유닛의 공장생산 관리)

  • Lee, Doo-Yong;Nam, Sung-Hoon;Lee, Jae-Sub;Jung, Dam-I;Kim, Kyoung-rai;Cho, Bong-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.6
    • /
    • pp.139-146
    • /
    • 2019
  • The modular building system is a type of prefabricated construction method, and is an industrialized building system that transports, assembles, and completes a three-dimensional module manufactured in a factory to the site. The economics of a modular building system where 50 to 80% of the entire process takes place in a modular factory is dominated by productivity of the factory manufacturing process. Since the building of the module is finished by the combination of unit parts produced by each material, it is necessary to manage the process in each module unit. However, currently marketed process control programs do not reflect the features of these modular methods. In this paper, we introduce Modular Factory Design software(MFD 2019) that can make modular unit production plan which reflects production base(modular factory) and production target(application and number of modular units). In order to verify software compatibility and reliability, two production plans with different production methods were formulated and simulated.