• Title/Summary/Keyword: Facility allocation

Search Result 106, Processing Time 0.025 seconds

A Study on Evaluation of optimal FAGTS location and capacity (FACTS 기기의 최적 위치 및 용량 산정에 관한 연구)

  • Song, Hwa-Chang;Lee, Byong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1026-1028
    • /
    • 1999
  • In recent deregulation and competitive power market environment, electric utilities plan and operate their systems for economic benefit with secure system condition. Therefore, implementation of Flexible AC Transmission Systems (FACTS) devices can be planned for the efficient utilization of the present system facility. This paper presents a technique to solve the problem about optimal allocation of FACTS devices far the purpose of enhanced system operation.

  • PDF

The Development and Application of the Service Evaluation Indicators of Transfer Facilities in the High-speed Railway Stations (고속철도역 환승시설 서비스 평가지표 개발 및 적용)

  • Kim, Cheol-Sun;Kim, Sigon;Kim, Jung-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.533-538
    • /
    • 2008
  • The introduction of KTX (Korea Train Express) has brought an historic change to the overall transit system in Korea. The high-speed railway stations in particular are expanding the scope as public transit centers. However, it is evident that the evaluation on the high-speed railway stations had not been performed successfully thus far. The most important element of the evaluation is the connectivity of the departure point to the arriving stations and also the internal transfer service stations. We developed the service evaluation indicators of transfer facilities in the high-speed railway stations. The indicators are comprised of the level of service (LOS), the propriety of allocation, and the quality of information throughout the facilities in the centers. We examined the 7 stations in Korea that are currently in operation and standardized the methodology of the evaluation process by applying the indicators suggested in this study.

Development of a Hospital Foodservice Facility Plan and Model based on General Sanitation Standards and RACCP Guidelines (병원급식에 일반위생관리기준과 HACCP 제도 적용을 위한 시설모델 개발)

  • 이정숙;곽동경;강영재
    • Korean journal of food and cookery science
    • /
    • v.19 no.4
    • /
    • pp.477-492
    • /
    • 2003
  • The purposes of the study were to establish HACCP-based standards and guidelines for conducting a plan review to build, or renovate, hospital food service establishments, and ensure the safety of foodservice and reduce the risk of food borne illness. The scope of the study included suggestion for the planning of hospital foodservice facilities: layout, design, equipment and modeling. The results of this study can be summarized as follows: 1) The development of a foodservice facility plan based on the results of a survey, literature reviews and the results of interviews with foodservice managers from 9 general hospitals. This was composed of operational policies in foodservices, layout characteristics, space allocation, selection, design, specification standards for equipment and the construction principles of foodservice facilities. 2) Two foodservice facility models were developed, one for general hospitals with 900 beds (2,000 patients and 2,500 employee meals per day) and the other for general hospitals with 300 beds (600 patients and 650 employees meals per day). 3) The suggested kitchen space requirements for the foodservice facility models were 341.2 ㎡ (W 17,100mm x L 23,700mm) and 998.8㎡ (W 35,600mm x L 32,800mm) for the 300 and 900 beds hospitals, respectively, with both designs being rectangular. The space requirements for the equipment, in relation to the total operational area, in terms of ratios were 1:3.5 and 1:3.8 for the 300 and 900 beds hospitals, respectively. The recommended space allowances per bed for the developed foodservice facility models were 1.15 ㎡ and 1.11 ㎡ for the 300 and 900 beds hospitals, respectively, which were increased by more than 30% compared to those suggested in the precedent study, and considered appropriate for the implementation of the HACCP system. 4) The hospital foodservice facilities plans and models were developed based on the general sanitation standards, guidelines and the HACCP system, and included foodservice facility layout, product flow, physical separation between contaminated and sanitary areas, foodservice facility specifications with a 1/300 scale for a 300 bed, and a 1/400 scale for a 900 beds blueprint. 5) The main features of the developed foodservice facility plans and models were; physical separation between contaminated and sanitary areas to prevent cross contamination, product flow in one direction from the arrival of the raw material to the finished product, and separation of different work areas and the process of receiving & preparation of products, refrigeration & storage, cooking, assembly, cleaning & disinfection, employee areas and janitorial facilities. The proposed models from this study were presented as examples for those wanting to build, or renovate, their facility for the production of foods.

Developement of a Design Manual for Kitchen Facility in Foodservice Outlets: A Case Study on a Seolleongtang Specialized Restaurant (푸드서비스시설의 주방 설비 산정 매뉴얼 개발: 설렁탕 전문 식당 사례 적용)

  • Choi, Gyeong-Gy;Chang, Hye-Ja
    • Journal of the FoodService Safety
    • /
    • v.2 no.2
    • /
    • pp.67-77
    • /
    • 2021
  • Concerns regarding work and food safety in foodservice operations are growing. The purpose of the study is to suggest guidelines for designing foodservice facilities, including school foodservices and Korean restaurants. A case of a franchise restaurant specializing in a Korean food item, Seolleongtang, was used to explain the facility design. The contents of the manual included ways to determine space allocation, calculate the application of utilities and the diameters of supply utility pipelines, and suggestions on how to decide on air conditioning equipment. The standards of the American Gas Association and the Japan Foodservice Equipment Association (JFEA) were applied to design the restaurant space. The JFEA standards and knowledge based on experience and statistics were applied to calculate the usage of utilities like fuel and water. The standards of JFEA and the Society of Heating, Air-Conditioning, and Sanitary Engineers of Japan were applied to calculate the diameters of the water supply and drainage pipelines. For the setting of the heating, ventilation, and air conditioning systems, three ways to carry out the calculation of effective ventilation were explained, as well as options to dicide the standard parameters of the duct and ventilation fans. This manual can contribute to the design of effective and efficient foodservice facilities and help secure the work safety of foodservice employees thereby ensuring food safety.

컴퓨터 시스템 설치를 위한 위치-할본-규모결정 모형

  • Choe, Su-In
    • ETRI Journal
    • /
    • v.5 no.3
    • /
    • pp.3-8
    • /
    • 1983
  • In the area of computer network planning, a location-allocation-size problem is involved. Since multi-facility location-allocation-size problems are very complex in formulating a mathematical model, it is a usual practise to adopt alternative approaches, which give no optimal results, instead of the optimal solution by mathematical approach. In this article, however, an attempt is made to formulate a mathematical model for the decision making problem of computer network design.

  • PDF

Site Selection of Carsharing Service by Spatial Analysis Method (공간분석기법을 이용한 Car-sharing 서비스 위치선정)

  • Do, Myungsik;Noh, Yun Seung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.6
    • /
    • pp.22-28
    • /
    • 2013
  • This study aims to propose the location selection method of car-sharing services in Daejeon Metropolitan city. In order to select locations for car-sharing, Daejoen area was divided in $500m{\times}500m$ cell size using GIS Arc/Info 10, and input factors which may affect car-sharing service were determined, and then each input factor was standardized for analysis. The weight for each input factor was determined through experts' survey and index of goodness of fit was estimated in each cell ($500m{\times}500m$ size) using AHP method. Also, This study proposed the method to select 30 service facility location using Location-allocation Model in Network Analysis module. The proposed method for the location selection of car-sharing service in this study can be used for preliminary data for initial car-sharing introduction. Henceforward, appropriate demand forecasting and economic evaluation for the location selection of car-sharing service are needed for the further study.

Resource Based Simulation in Semiconductor Business (반도체 R&D BPR 시뮬레이션)

  • 김원경;이종복
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.05a
    • /
    • pp.31-35
    • /
    • 2001
  • Simulation --- The ideal tool for BPR. Work now and CASE tools are static modeling tools. Based on our own customers surveys, we have discovered that the use of process modeling tools thus far has focused on modeling the current(What-Is) state of a business. We have found that 90 percent of reengineering projects, the modeling tools of choice have been flowcharting tools. Static models offer help in understanding the overall nature of an existing process. However, static models can not really help you see the step by step motions towards completion of your goals. In static modeling, you see two pictures in time, usually taken at the current state and final state models of your reengineering project. Static models are usually not object oriented, therefore can not show facility or office layout and movement of entities and objects throughout the facility. However, this does not mean that static modeling does not have its application nor add value to the user as in a few success stories. Simulation helps the team analyze the complex aspects of the project. Many times a plan that looks good on paper might turn out entirely different when put into action. Therefore, simulation helps you look at how situations might work before actual implementation. In particular, computer simulation models help you view a reengineered condition before they are rolled-out. Items such as a lead time and resource allocation.

  • PDF

The Improvement Scheme of Rural Villages by Spatial Characteristics (농촌마을정비시 농촌공간특성별 정비유형 분석)

  • Choi, Young-Wan;Yoon, Yong-Cheol;Kim, Young-Joo
    • Journal of Korean Society of Rural Planning
    • /
    • v.16 no.2
    • /
    • pp.1-10
    • /
    • 2010
  • This study aimed to systematically adjust rural area development projects that have been carried out by a variety of government departments for activation of rural areas and overcome inefficient problems caused by the policies and projects promoted separately. As its alternative, this study aimed to explore efficient improvement scheme of rural villages associated with various projects. Major agriculture/rural policies and projects that have been promoted were classified by the target space of the policies and projects as Environment space, living space, and production space. Each space was categorized into five sub-items without duplication. By assessment results of rural area improvement level and preference by Analytic Hierarchy Process(AHP) method, maintenance of rural areas was classified into four types. And outer space structure was analyzed by using Space Syntax Method(SSM). Based on the analysis result above, facilities for improvement of rural villages were placed around representative facilities. Facility allocation was based on selection and concentration in terms of facility maintenance and on type attributes in terms of spatial aspects. And finally, alternatives schemes for setting up the basic direction of improvement of rural villages are local area characteristics and environmentally conscious business plan.

Automation of block assignment planning using a diagram-based scenario modeling method

  • Hwang, In Hyuck;Kim, Youngmin;Lee, Dong Kun;Shin, Jong Gye
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.162-174
    • /
    • 2014
  • Most shipbuilding scheduling research so far has focused on the load level on the dock plan. This is because the dock is the least extendable resource in shipyards, and its overloading is difficult to resolve. However, once dock scheduling is completed, making a plan that makes the best use of the rest of the resources in the shipyard to minimize any additional cost is also important. Block assignment planning is one of the midterm planning tasks; it assigns a block to the facility (factory/shop or surface plate) that will actually manufacture the block according to the block characteristics and current situation of the facility. It is one of the most heavily loaded midterm planning tasks and is carried out manually by experienced workers. In this study, a method of representing the block assignment rules using a diagram was suggested through analysis of the existing manual process. A block allocation program was developed which automated the block assignment process according to the rules represented by the diagram. The planning scenario was validated through a case study that compared the manual assignment and two automated block assignment results.

A Study on the cost allocation method of the operating room in the hospital (수술실의 원가배부기준 설정연구)

  • Kim, Hwi-Jung;Jung, Key-Sun;Choi, Sung-Woo
    • Korea Journal of Hospital Management
    • /
    • v.8 no.1
    • /
    • pp.135-164
    • /
    • 2003
  • The operating room is the major facility that costs the highest investment per unit area in a hospital. It requires commitment of hospital resources such as manpower, equipments and material. The quantity of these resources committed actually differs from one type of operation to another. Because of this, it is not an easy task to allocate the operating cost to individual clinical departments that share the operating room. A practical way to do so may be to collect and add the operating costs incurred by each clinical department and charge the net cost to the account of the corresponding clinical department. It has been customary to allocate the cost of the operating room to the account of each individual department on the basis of the ratio of the number of operations of the department or the total revenue by each operating room. In an attempt to set up more rational cost allocation method than the customary method, this study proposes a new cost allocation method that calls for itemizing the operation cost into its constituent expenses in detail and adding them up for the operating cost incurred by each individual department. For comparison of the new method with the conventional method, the operating room in the main building of hospital A near Seoul is chosen as a study object. It is selected because it is the biggest operating room in hospital A and most of operations in this hospital are conducted in this room. For this study the one-month operation record performed in January 2001 in this operating room is analyzed to allocate the per-month operation cost to six clinical departments that used this operating room; the departments of general surgery, orthopedic surgery, neuro-surgery, dental surgery, urology, and obstetrics & gynecology. In the new method(or method 1), each operation cost is categorized into three major expenses; personnel expense, material expense, and overhead expense and is allocated into the account of the clinical department that used the operating room. The method 1 shows that, among the total one-month operating cost of 814,054 thousand wons in this hospital, 163,714 thousand won is allocated to GS, 335,084 thousand won to as, 202,772 thousand won to NS, 42,265 thousand won to uno, 33,423 thousand won to OB/GY, and 36.796 thousand won to DS. The allocation of the operating cost to six departments by the new method is quite different from that by the conventional method. According to one conventional allocation method based on the ratio of the number of operations of a department to the total number of operations in the operating room(method 2 hereafter), 329,692 thousand won are allocated to GS, 262,125 thousand won to as, 87,104 thousand won to NS, 59,426 thousand won to URO, 51.285 thousand won to OB/GY, and 24,422 thousand won to DS. According to the other conventional allocation method based on the ratio of the revenue of a department(method 3 hereafter), 148,158 thousand won are allocated to GS, 272,708 thousand won to as, 268.638 thousand won to NS, 45,587 thousand won to uno, 51.285 thousand won to OB/GY, and 27.678 thousand won to DS. As can be noted from these results, the cost allocation to six departments by method 1 is strikingly different from those by method 2 and method 3. The operating cost allocated to GS by method 2 is about twice by method 1. Method 3 makes allocations of the operating cost to individual departments very similarly as method 1. However, there are still discrepancies between the two methods. In particular the cost allocations to OB/GY by the two methods have roughly 53.4% discrepancy. The conventional methods 2 and 3 fail to take into account properly the fact that the average time spent for the operation is different and dependent on the clinical department, whether or not to use expensive clinical material dictate the operating cost, and there is difference between the official operating cost and the actual operating cost. This is why the conventional methods turn out to be inappropriate as the operating cost allocation methods. In conclusion, the new method here may be laborious and cause a complexity in bookkeeping because it requires detailed bookkeeping of the operation cost by its constituent expenses and also by individual clinical department, treating each department as an independent accounting unit. But the method is worth adopting because it will allow the concerned hospital to estimate the operating cost as accurately as practicable. The cost data used in this study such as personnel expense, material cost, overhead cost may not be correct ones. Therefore, the operating cost estimated in the main text may not be the same as the actual cost. Also, the study is focused on the case of only hospital A, which is hardly claimed to represent the hospitals across the nation. In spite of these deficiencies, this study is noteworthy from the standpoint that it proposes a practical allocation method of the operating cost to each individual clinical department.

  • PDF