• Title/Summary/Keyword: Facile synthesis

Search Result 336, Processing Time 0.023 seconds

Synthesis of Some new 2-Azolyl-and Azinylthiopyrimidines

  • Sherif, Laila-Abrahim;Sherif, Sherif-M.;Rasha-A.M. Faty;Fattah, Abdel-Samei-M. Abdel
    • Archives of Pharmacal Research
    • /
    • v.18 no.1
    • /
    • pp.51-55
    • /
    • 1995
  • A facile convenient syntheses of the titled compounds, via reacting the precusor 2-amino-2-(pentane-2, 4-dion-3-yithio)-6-phenylpyrimidine-5-carbonitrile (1) with nitrogen nucleophiles and with the carbanions of some active methylene compounds, is reported. Chemical and spectroscopic evidence of the newly syntheised compounds are described.

  • PDF

Synthesis and Characterization of Tetrathiafulvalene-Based Smectic Liquid Crystals

  • Wang, Lei;Kim, Young-Gook;Jeong, Kwang-Un;Lee, Myong-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1389-1392
    • /
    • 2009
  • A series of new symmetric TTF derivatives were designed and synthesized. This facile synthetic method provides an opportunity to prepare TTF-based LC candidates. This series of compounds exhibited smectic A phase based on coplanar TTF core. One of the LC compounds was used as a semiconductor layer to fabricate OTFT.

  • PDF

Rare earth oxide luminescence materials via electrospinning: synthesis and characteristics

  • Hou, Zhiyao;Lin, Jun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.200-203
    • /
    • 2009
  • One-dimensional rare earth oxide luminescence nano materials have been prepared by a combination method of sol-gel process and electrospinning. Systematic studie s on optical properties indicate that electrospinning is a facile and novel route for development luminescen ce materials that are useful in fluorescent lamps an d field emission dispalys.

  • PDF

Synthesis of Trimetallic Au@Pb@Pt Core-shell Nanoparticles and their Electrocatalytic Activity toward Formic Acid and Methanol

  • Patra, Srikanta;Yang, Hae-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1485-1488
    • /
    • 2009
  • A facile, seed-mediated preparation method of trimetallic Au@Pb@Pt core-shell nanoparticles is developed. Au nanoparticles are the template seeds onto which sequentially reduced Pb and Pt are deposited. The trimetallic core-shell structure is confirmed by UV-Vis spectroscopy, TEM and EDS analysis, and cyclic voltammetry. The trimetallic Au@Pb@Pt core-shell nanoparticles show high electrocatalytic activity for formic acid and methanol electrooxidation.