Facile Synthesis of 1,2,3,4-Tetrasubstituted Pyrroles from Baylis-Hillman Adducts

Scong Jin Kim, Hoo Sook Kim, Tack Hycon Kim, ${ }^{\dagger}$ and Jae Nyoung Kim ${ }^{*}$
Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangit 500-757, Korea
${ }^{\text {' E-mail: kiminachonnam.ackr }}$
"Department of Applied Chemistry. Chonnam National University, Gwangin 500-757, Korea Recened June 4, 2007

Key Words : Pyrroles, Baylis-Hillman adducts, PCC, Decyanomethylation

Suitably functionalized pyrroles are the basic skeleton of many biologically important substances and numerous synthetic methods of pyrroles have been investigated extensively. ${ }^{1.2}$ However, the synthesis of pyrrole derivatives from Baylis-Hillman adducts was not developed much. ${ }^{2}$ Recently, we reported the synthesis of 2,3,4-trisubstituted pyrroles starting from the rearranged aza-Baylis-Hillman adducts (Scheme I). ${ }^{3}$

Meantime we presumed that we could synthesize 1,2,3,4tetrasubstituted pyrrole derivatives by using the synthetic approach in Scheme 2. As shown in Scheme 2, we imagined that the reaction of Baylis-Hillman acetate $\mathbf{1}$, as the representative example, and secondary amine derivatives 2a-d could give the corresponding $\mathrm{S}_{2} 2^{2}$ product $\mathbf{3 a - d}$, which could be cyclized to 4 a-d under basic conditions. The following acid-catalyzed dehydration and concomitant double bond isomerization of $4 \mathbf{a}-\mathbf{d}$ would provide desired pyrroles 5a-d.

Among the examined conditions the use of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{CH}_{3} \mathrm{CN}$ gave the best results for the preparation of $4 \mathrm{a}-\mathrm{d}$. As expected we could not observe the formation of $\mathbf{3}$ (except for 3c, entry 3 in Table 1), ${ }^{4}$ instead we obtained $\mathbf{4 a}$-d directly in $50-74 \%$ yields as inseparable swn/anif mixtures in a one-pot reaction. Based on the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 a - d}$ the ratio of syn/anif was 4:1 to 2:1 (footnotes b-d in Table I), however,
we did not confirm which isomer is the major one. For the reaction of $\mathbf{1}$ and $\mathbf{2 c}$ we isolated $3 c$ in 34% yield (entry 3 in Table 1) together with $\mathbf{4 c}$ in 50% yield. For the synthesis of compound $\mathbf{4 d}$ (entry 4) we used $\mathbf{2 d}{ }^{5}$ in slightly excess amount (footnote e in Table 1). The following dehydration step of $\mathbf{4 a - d}$ was carried out under the influence of $p-\mathrm{TsOH}$ ($20-40 \mathrm{~mol} \%$) in benzene and we obtained the desired compounds $\mathbf{5 a - d}$ in $41-64 \%$ yields. Isomerization of double bond occurred during the dehydration stage simultaneously to afford pyrroles directly. The results are summarized in Table 1.

However, the reaction of $\mathbf{1}$ and 2 e showed somewhat different reactivity as compared with those of 2a-d (Scheme 3). When we carried out the reaction of $\mathbf{1}$ and 2 e in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature the reaction did not show the formation of any new compounds in appreciable amounts presumably due to the limited solubility of $\mathbf{2 e}$ in $\mathrm{CH}_{3} \mathrm{CN}$. Thus we elevated the temperature to refluxing, however, rearranged acetate was the major product in this case. After many trials we could obtain 3 e in 74% yield in aqueous $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature. In aqueous $\mathrm{CH}_{3} \mathrm{CN}$ the compound 2 e was dissolved completely and the rearrangement of acetate group of 1 to the primary position was minimized at room temperature. With this compound $3 e$ in our hand we prepared $\mathbf{4} \mathbf{e}$ under the same conditions of Table $1\left(\mathrm{CH}_{3} \mathrm{CN}\right.$,

Scheme 1

Scheme 2

Table 1. Synthesis of 1,2,3.4-tetrasubstituted pyrroles

Eminy	$1+2$	Conditions	3 (\%) / 4 (\%)	Conditions	5 (\%) ${ }^{r}$
1	1+2a	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.1) equiv)	$3 \mathrm{a}(\mathrm{nd})^{c} / 4 \mathrm{a}(69)^{\text {b }}$	p-TsOH (20 mol\%)	53 (64)
		$\mathrm{CH}_{3} \mathrm{CV}$. retlux. 27 h		PhH. retlux. 10 h	
2	$1+2 b$	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.1 equiv)	$\mathbf{3 b}(\mathrm{nd})^{\prime \prime} / \mathbf{4 b}(71)^{\text {c }}$	$p-$ TsOH (20 mol\%)	Sb (47)
		$\mathrm{CH}_{3} \mathrm{C} \mathrm{N}$. rellux. 26 h		Phil. reflux. 12 h	
3	$1+2 \mathrm{c}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.2 equiv)	$3 \mathrm{c}(34) / 4 \mathrm{c}(50)^{\text {f }}$	$p-\mathrm{TsOH}(40 \mathrm{~mol} \%$)	5 c (56)
		$\mathrm{CH}_{3} \mathrm{CN}$. rellux. 7 days		Phil. retlux. 2 days	
4	$1-2 d^{*}$	$\mathrm{K}_{2}\left(\mathrm{CO}_{3}\right.$ (1.1 equiv)	$3 \mathrm{~d}(\mathrm{nd})^{\boldsymbol{a}} / \mathbf{4 d}(74)^{\text {d }}$	$p-\mathrm{TsOH}(20 \mathrm{~mol} \%$)	5 d (41)
		$\mathrm{CH}_{3} \mathrm{CN} . \mathrm{rt} .1 \mathrm{~h}$		Phil. rellux. 12 h	

 $\mathbf{2 d}$ was prepared by the reaction of bemylamine and phenacyl bromide according to the relerence. The compound $\mathbf{2 d}$ was unstable thus we used this compound its a crude state and we used 0.91 equiv of 1 . Isolated y ield.

Scheme 3
$\mathrm{K}_{2} \mathrm{CO}_{3}$. reflux, 24 h) in 77% yield (syn/anti, $3: 2$). Dehydration of $\mathbf{4} \mathbf{e}$ under the same conditions ($p-\mathrm{Js} \mathrm{OH} /$ benzene/ reflux) afforded $\mathbf{5 e}$ in 49% yield. During the synthesis of $\mathbf{4 e}$ we observed the formation of trace amounts of 5 e and 7 . It is interesting to note that the yields of $\mathbf{5 e}$ and 7 were increased with concomitant decrease of $4 \mathbf{e}$ when we used $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ $\left(\mathrm{CH}_{3} \mathrm{CN}\right.$, reflux, 3 h$)$. The formation of pyrrole derivative 7 can be explained by decyanomethylation of $5 \mathrm{e} .{ }^{6}$ and we confirmed the conversion experimentally by transforming $\mathbf{5} \mathbf{e}$ into 7 under the same conditions (41% and recovered $\mathbf{5 e}$ in 10%).

Finally, we examined the possibility for the oxidation of 5a into 4-benzoylpyrrole derivative $\mathbf{6}$ as in our previous oxidation involving PCC (pyridinium chlorochromate) in a similar syatem. ${ }^{7}$ However, the yield of oxidized compound 6 was very low to be useful in a synthetic point of view. It is interesting to note that the oxidation with the precursor $\mathbf{4 a}$ instead of $\mathbf{5 a}$ showed somewhat improved yield.
In summary, we disclosed the synthesis of poly-substituted

Scheme 4
pyrrole derivatives from the reaction of Baylis-Hillman acetate and some secondary amine compounds. ${ }^{8}$

Experimental Section

Typical experimental procedure for the synthesis of compounds $4 a$ and $5 a$, and the spectroscopic data of $3 c$,

Votes
$3 \mathrm{e}, 4 \mathrm{a}-\mathrm{e}, 5 \mathrm{a}-\mathrm{e}, 6$, and 7 are as follows. A stirred mixture of 1 (218 mg .1 .0 mmol), 2 a (189 mg .1 .0 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (152 mg . 1.1 mmol) in $\mathrm{CH}_{3} \mathrm{CN}$ (5 mL) was heated to reflux for 27 h . After the usual aqueous workup procedure and column chromatographic purification process (hexanes/ EtOAc. 3:1) we obtained ta as colorless oil. 240 mg (69%). A solution of ta ($174 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $p-\mathrm{TsOH}$ (19 mg . 0.1 mmol) in benzene (4 mL) was heated to reflux for 10 h . After the usual aqueous workup procedure and column chromatographic purification process (hexanes/EtOAc. 6:1) we obtained 5 a as a white solid. $105 \mathrm{mg}(64 \%)$.

Compound 3c: 34\%; colorless oil: IR (film) 2924. 1737. 1666. $1231,1189.1029 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s} .2 \mathrm{H}) .3 .76(\mathrm{~s}$. $2 \mathrm{H}), 3.81(\mathrm{~s} .2 \mathrm{H}) .4 .04(\mathrm{q} . J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.27(\mathrm{~m}$. $5 \mathrm{H}), 7.32-7.42(\mathrm{~m} .3 \mathrm{H}), 7.55-7.58(\mathrm{~m} .3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 14.14,26.70,49.21,53.37 .57 .85,60.07$. 127.10, 128.18. 128.37, 128.83. 129.11. 130.05, 135.11. 138.59. 139.04, 141.62. 171. 18. 200.85.

Compound 3e: 74\%; colorless oil: IR (film) 2246. 1664. $1421,1230.1132 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 2.51(\mathrm{~s}$, $3 \mathrm{H}), 3.55(\mathrm{~s} .4 \mathrm{H}) .3 .64(\mathrm{~s}, 2 \mathrm{H}) .7 .42-7.49(\mathrm{~m}, 5 \mathrm{H}) .7 .85(\mathrm{~s}, 1 \mathrm{H})$.
Compound ta: 69% (synconti, 2:1): colorless oil: IR (film) $3446.2981,1738.1448 .1195,1097 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$. 300 MHz , major isomer) $\delta 1.27(\mathrm{t} . J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .1 .31$ (t. J $=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .1 .64(\mathrm{~s}, 3 \mathrm{H}) .2 .80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .3 .51-3.84(\mathrm{~m}$. $4 \mathrm{H}) .4 .11-4.36(\mathrm{~m} .5 \mathrm{H}) .6 .61(\mathrm{t} . J=2.4 \mathrm{~Hz} . \mathrm{IH}) .7 .20-7.24$ $(\mathrm{m}, 3 \mathrm{H}) .7 .28-7.36(\mathrm{~m}, 2 \mathrm{H})$

Compound $+\mathrm{b}: 71 \%$ (smanti, $4: 1$); colorless oil: IR (film) 3452. 2954. 1747. 1693. 1442. 1213. $1178 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl $\mathrm{CD}_{3}, 300 \mathrm{MHz}$ major isomer) $\delta 1.63(\mathrm{~s}, 3 \mathrm{H}) .3 .51-3.90$ $(\mathrm{m}, 6 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}) .3 .77(\mathrm{~s}, 3 \mathrm{H}) .6 .61(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$. $7.20-7.26(\mathrm{~m} .3 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 2 \mathrm{H})$.

Compound $4 \mathrm{c}: 50 \%$ (synionti. $3: \mathrm{I}$): colorless oil; IR (film) 3454. 2981, 1739. 1448. 1261, $1196 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$. 300 MHz , major isomer) $\delta 1.32(\mathrm{t} . J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .1 .60(\mathrm{~s}$. $3 \mathrm{H}), 2.75$ (br s. IH). $3.34-3.65$ (m. 3 H). 3.94-4.05 (m. 2H). $4.21-4.31(\mathrm{~m} .2 \mathrm{H}) .6 .56(\mathrm{t} . J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) .7 .15-7.21(\mathrm{~m}$. $3 \mathrm{H}) .7 .24-7.39(\mathrm{~m}, 2 \mathrm{H})$.

Compound 4d: 74\% (swnanti, 3:1): colorless oil: IR (film) 3438. 1676, 1448. 1228. 1180. $1092 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$. 300 MHz . major isomer) $\delta 1.55$ (s. 3 H). 2.68 (br s. 1 H). $3.38-4.23(\mathrm{~m} .4 \mathrm{H}) .4 .38(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{t}, J=2.4 \mathrm{~Hz}, \mathrm{IH})$. 7.17-7.34 (m, 10H). 7.43-7.49 (m, 2H). 7.54-7.60 (m, 1H). 7.93-7.97 (m. 2H).

Compound te: 77\% (smnanti, 3:2): colorless oil: IR (film) 3429. 2925, 2222. 1448. 1261, $1101 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR (CDCl_{3}. 300 MHz , major isomer) $\delta 1.66(\mathrm{~s}, 3 \mathrm{H}) .2 .60(\mathrm{br} \mathrm{s}, \mathrm{IH}), 3.69$ $(\mathrm{s} . \mathrm{H}) .3 .80-3.97(\mathrm{~m}, 4 \mathrm{H}) .6 .70(\mathrm{t} . J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-$ $7.46(\mathrm{~m}, 5 \mathrm{H})$ and ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3,}, 300 \mathrm{MHz}\right.$, minor isomer) $\delta 1.71(\mathrm{~s} .3 \mathrm{H}) .2 .54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.78(\mathrm{~s} .1 \mathrm{H}) .3 .81(\mathrm{~s}, \mathrm{IH})$. $3.87(\mathrm{~s}, \mathrm{IH}) .3 .91(\mathrm{~d}, J=2.4 \mathrm{~Hz} .2 \mathrm{H}), 6.60(\mathrm{t}, J=2.4 \mathrm{~Hz}$. $1 \mathrm{H}) .7 .21-7.42(\mathrm{~m}, 5 \mathrm{H})$.
Compound 5a: 64% : white solid. $\mathrm{mp} 42-44^{\circ} \mathrm{C}$: IR (film) 1755. 1687, 1417. 1298. 1199, $1097 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$. $300 \mathrm{MHz}) \delta 1.27(\mathrm{t} . J=7.2 \mathrm{~Hz} .3 \mathrm{H}), 1.32(\mathrm{t} . J=7.2 \mathrm{~Hz} .3 \mathrm{H})$. $2.24(\mathrm{~s}, 3 \mathrm{H}) .3 .76(\mathrm{~s} .2 \mathrm{H}), 4.21(\mathrm{q} . J=7.2 \mathrm{~Hz} .2 \mathrm{H}), 4.25(\mathrm{q} . J$
$=7.2 \mathrm{~Hz} .2 \mathrm{H}) \cdot 4.87(\mathrm{~s} .2 \mathrm{H}) .6 \cdot 42(\mathrm{~s} .1 \mathrm{H}) .7 .12 \cdot 7.20(\mathrm{~m}, 3 \mathrm{H})$, $7.25-7.30$ (m. 2 H): ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right) \delta 11.60$, 14.12. 14.34, 31.24. 51.14, 59.69. 61.30, 119.74, 122.66. $125.84,127.65 .128 .32$. 128.53, 128.66, 140.81. 162.08, 169.27. LCMS mz $329\left(\mathrm{M}^{-}\right)$.

Compound 5b: $\mathbf{4 7 \%}$; colorless oil; IR (film) 1759, 1693. 1444. 1215, 1124. $1099 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3} .300 \mathrm{MHz}$) δ 2.23 (s. 3 H). 3.75 (s. 3 H). 3.76 (s. 2 H). 3.79 (s. 3 H). 4.87 (s. $2 \mathrm{H}) .6 .43(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.20(\mathrm{~m}, 3 \mathrm{H}) .7 .24-7.30(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right) \delta 11.54 .31 .22 .50 .80 .50 .97 .52 .28$. 119.55. 122.77. 125.86, 127.87. 128.33, 128.52. 128.72. 140.68, 162.54. 169.69.

Compound $\mathbf{5 c}$: 56%, colorless oil: IR (film) 1693. 1452, 1421. 1386, 1297, $1095 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3 .} .300 \mathrm{MHz}\right) \delta$ $1.24(\mathrm{t}, J=6.9 \mathrm{~Hz} .3 \mathrm{H}), 2.24 .(\mathrm{s} .3 \mathrm{H}) .3 .76(\mathrm{~s}, 2 \mathrm{H}), 4.19(\mathrm{q} . J$ $=6.9 \mathrm{~Hz} .2 \mathrm{H}) .5 .43(\mathrm{~s} .2 \mathrm{H}) .6 .55(\mathrm{~s} .1 \mathrm{H}) .7 .01-7.04(\mathrm{~m}, 2 \mathrm{H})$, 7.14-7.29 (m. 8H): ${ }^{13} \mathrm{C}$ NMR (CDCl 3.75 MHz$) \delta$ 11.69, 14.28. 31.21, 52.44. 59.47, 119.60, 122.29, 125.76, 126.41, $127.04,127.33 .128 .28$. 128.39. 128.43, 128.59. 138.96, 141.03, 161.86; LCMS $m z 333\left(\mathrm{M}^{+}\right)$.

Compound 5d: 41%; colorless oil; IR (film) $1624,1495$. 1446. 1400, 1215. $1173 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta$ $1.63(\mathrm{~s}, 3 \mathrm{H}) .3 .73(\mathrm{~s}, 2 \mathrm{H}) .5 .37(\mathrm{~s} .2 \mathrm{H}), 6.68(\mathrm{~s} .1 \mathrm{H}), 7.05-$ $7.08(\mathrm{~m}, 2 \mathrm{H}) .7 .16-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.34-7.40(\mathrm{~m} .2 \mathrm{H}) .7 .44-$ $7.50(\mathrm{~m} .1 \mathrm{H}), 7.58-7.61(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75$ MHz) $\delta 12.04,31.30 .51 .99,122.72,125.87,126.80,127.28$. $128.16,128.23$. $128.34 . \quad 128.39$ (2C), 128.45. 128.47. $129.00,129.35 .131 .59 .138 .71,140.73,188.34 ;$ LCMS $m z$ $365\left(\mathrm{M}^{+}\right)$.

Compound 5e: $\mathbf{4 9 \%}$; colorless oil: IR (film) 2208. 1493, 1425. 1390, $1372 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) $\delta 2.11$ $(\mathrm{s}, 3 \mathrm{H}), 3.73(\mathrm{~s} .2 \mathrm{H}) .4 .82(\mathrm{~s}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.16(\mathrm{~m}$, $2 \mathrm{H})$. $7.19-7.33$ (m. 3H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $10.32 .31 .25,35.66,103.72 .112 .38,113.39,124.99$. 125.64, 126.42, 128.45. 128.63. 132.60, 139.28 .

Compound 6: 34%; colorless oil: IR (film) 2981. 1753, 1693. 1643, 1251, $1203 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3 .} .300 \mathrm{MHz}\right) \delta$ $1.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{t} . J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.64(\mathrm{~s}$, $3 \mathrm{H}) .4 .24(\mathrm{q} . J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .4 .32(\mathrm{q} . J=7.5 \mathrm{~Hz} .2 \mathrm{H}) .4 .95$ (s. 2 H). 7.06 (s. 1H). $7.43-7.47$ (m. 2 H). $7.52-7.55(\mathrm{~m} .1 \mathrm{H})$. 7.76 (m. 2H): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 12.55,14.12$, $14.28 .51 .79,60.47 .61 .73$. 121.91. 122.65. 128.26. 129.04. 131.69. 132.49. 134.92, 140.18, 168.24 (2C). 191.45: LCMS $m=343\left(\mathrm{M}^{-}\right)$.

Compound 7: 41% : pale yellow solid, $\mathrm{mp} 95-97^{\circ} \mathrm{C}$; IR (film) $3303,2212,1396 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right)$ $\delta 2.11(\mathrm{~s} .3 \mathrm{H}) .3 .75(\mathrm{~s} .2 \mathrm{H}) .6 .58(\mathrm{~d} . J=3.0 \mathrm{~Hz} .1 \mathrm{H}) .7 .14-$ 7.22 (m. 3H). $7.26-7.31(\mathrm{~m} .2 \mathrm{H}), 8.45$ (br s, 1 H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right) \delta 9.96,31.29,100.08 .114 .45,121.97$. 123.62, 126.12. 128.43. 128.46, 130.64, 140.16; LCMS mz $196\left(\mathrm{M}^{+}\right)$.

Acknowledgments. This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, KRF-2006-311-C00384). Spectroscopic data was obtained from the Korea Basic Science Institute. Gwangju branch.

References and Notes

1. For the syntheses and biological activities of pyrrole derivatives. see: (a) Bellina. F:; Rossi, R. Tetrahedron 2006, 62. 7213-7256. (b) Knight. D. W.: Sharland C. M. Symett 2004. 119-121. (c) Singh, V: Kanojiva, S.: Batra. S. Tetrahedron 2006, 62, $10100-$ 10110. (d) Knight. D. W.: Sharland. C. M. Swhetl 2003. 22582260. (e) Magnus. N. A.: Staszak. M. A.: Udodong. U. E.: Wepsiec. J. P. Org. Proc. Res, Dev. 2006. $10.899-904$, (f) Zen. S.: Harada, K. Chrem. Pharm. Buhl. 1982, 30. 366-369. (g) Chen. Q: Wang. T.; Zhang. Y: Wang, Q.: Ma. J. Symh Commm. 2002, 32. 1051-1058. (h) Nicolaou. I.: Demopoulos. V. J. J. Med. (hem. 2003. 46. $417-426$. (i) Gupton. J. T.: Banner. E. J.: Scharf. A. B: Norwood. B. K.: Kanters. R. P. F.: Dominey. R. N.: Hempel. J. E.: Kharlamova. A.: Bluhn-Chertudi. I.: Hickenboth. C. R.: Little. B. A.: Sartin. M. D.; Coppock, M. B.: Krumpe K. E.; Burnham, B. S.: Holt, H.: Dut K. X.: Keertikar K. M.: Diebes, A.: Ghassemi, S.: Sikorski, J. A. Tertahedron 2006, 62. 8243-8255. (j) Cadamuro. S.: Degani. I.: Dughera. S.: Fochi. R.: Gatti. A.: Piscopo. L. J. Chem. Soc. Perkin Trons. 1 1993. 273-283. (k) Cohnen. E.: Dewald. R. Sinhthesis 1987. 566-568. (1) Misra. N. C.: Panda, K.: Ila, H.: Junjappa, H. J. Org. Chem. 2007. 72. 12461251.
2. For the examples on the synthesis of pyrroles from BavisHillman adducts. see: (a) Declerck. V: Ribiere. P.: Martinez. J.: Lamaty. F. J. Org. Chem. 2004. 69. 8372-8381. (b) Shi. M.: Xu. Y.-M. Etw: J. Org. Chem. 2002. 696-701. (c) Roy. A. K.: Pathak. R.: Yaday, G. P.: Maulik, P. R.: Batra, S. Symhesis 2006. 1021-
3.
4. Lee. H. S.: Kim. T. M.: Kimn. T. N. Tetrahedron Lett. 2007. 18. 4119-4122
5. When we carried out the reaction in DMF in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ at room temperature, the corresponding intermediates 3 could be isolated in moderate yields.
6. For the synthesis of compound 2d. see: (a) Kawamoto. A.: Wills. M. Terrahedron: Aswmemy 2000. 11.3257-3261. (b) Guarna. A.: Bucelli. I.: Machetti. F.: Menchi. G: Ocehiato. E. G.: Scarpi. D.: Trabocchi. A. Terahedron 2002. 58, 9865-9870. (c) Deng. B.-L.; Demillequand, M; Laurent, M; Touillaus, R.: Belmans, M; Kemps. L.; Ceresiat, M; Marchand-Brynaert. J. Tetrahedron 2000. 56. 3209-3217.
7. For the decyanomethylation. see: (a) Katritzky. A. R.: Latif. M.: Urogdi. L. J. Chem. Soc., Perkin Trans. 1 1990. 667-672. (b) Overman. L. E.: Shin, J. J. Org. Chem. 1991, 56. 5005-5007. (c) Yang. T.-K.; Hung. S.-M.: Lee, D.-S.; Hong. A.-W.: Cheng, C.-C. Tertahedron Lett. 1989, 30. 4973-4976. (d) Padwa. A.: Chen, Y.Y:: Dent. W.: Nimmesgern. H.J. Org. Chen. 1985. $50.4006-4014$.
8. For the related PCC oxidations. see: (a) Kim. S. T.: Lee. H. S.: Kimn. T. N. Tetrahedron Lett. 2007. 48. 1069-1072. (b) Dauben. W. G.; Michno, D. M. J. Org. Chem. 1977, 42. 682-685.
9. For our recent publications on the synthesis of nitrogen-containing five-membered heterocyclic compounds, see: (a) Lee. K. Y.: Lee. Y. T.: Kimn. J. N. Bull. Korean Chem. Soc. 2007. 28. 143-146. (b) Kimn. S. C.: Lee. K. Y.: Gowrisankar. S.: Kim. T. N. Bull. Korean Chemt Soc. 2006. 27. 1133-1139. (c) Lee. H. S.: Kim. S. J.: Kim. J. N. Bull. Korean Chem. Soc. 2006. 27. 1063-1066.
