$\mathbf{R u C l}_{2}\left(\mathbf{P P h}_{3}\right)_{3}$-Catalyzed Facile One-Pot Synthesis of 1,2-Dihydro-1-arylnaphtho[1,2-e] [1,3]oxazine-3-ones and 1,2-Dihydro-1-arylnaphtho[1,2-e][1,3]oxazine-3-thiones

Xiaoyan Zhu and Yong Rok Lee*
School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Korea. ${ }^{*}$ E-mail: yrlee@yu.ac.kr Received July 7, 2012, Accepted August 1, 2012

Key Words: $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$, Multi-component, 1,2-Dihydro-1-arylnaphtho[1,2-e][1,3]oxazine-3-ones, 1,2-Di-hydro-1-arylnaphtho [1,2-e][1,3]oxazine-3-thiones

Benzoxazinones and benzthioxazinones have received considerable attention because of the attractive pharmacological properties associated with their heterocyclic scaffold. ${ }^{1}$ Molecules bearing these skeletons have been reported to exhibit a variety of biological properties, including antiinflammatory, antiulcer, antipyretic, antihypertensive, and antifungal activities. ${ }^{2}$ Some of these compounds also exhibit several important biological activities such as DP receptor antagonism, ${ }^{3}$ integrin antagonism, ${ }^{4}$ platelet fibrinogen receptor antagonism, ${ }^{5}$ calmodulin antagonism, ${ }^{6}$ and inhibition of the transforming growth factor β (TGF- β) signaling pathway, ${ }^{7}$ soybean lipoxygenase, ${ }^{8}$ and other protein kinase. ${ }^{9}$ Because of the importance of these compounds, several synthetic methods for 1,2-dihydro-1-arylnaphtho [1,2-e][1,3]oxazine3 -ones and 1,2-dihydro-1-arylnaphtho [1,2-e][1,3]oxazine-3thiones have been developed. ${ }^{10-14}$ The reported methods mainly include one-pot three-component reactions of 2naphthol, aromatic aldehydes, and urea or thiourea (Scheme 1). These reactions for the synthesis of 2-dihydro-1-arylnaphtho $[1,2-e][1,3]$ oxazine-3-ones have been studied with the use of several catalysts and reagents such as Cu-nano-particles/PEG-400, ${ }^{10} \mathrm{TMSCl}^{11} \mathrm{HClO}_{4} / \mathrm{SiO}_{2},{ }^{12} \mathrm{H}_{3} \mathrm{Mo}_{12} \mathrm{O}_{40} \mathrm{P},{ }^{13}$ montmorillonite K10 clay, ${ }^{14}$ and iodine. ${ }^{15}$ Interestingly, several synthetic approaches for the synthesis of 2-dihydro-1arylnaphtho $[1,2-e][1,3]$ oxazine-3-ones have been described, but only one example for the synthesis of 1,2-dihydro-1arylnaphtho $[1,2-e][1,3]$ oxazine-3-thiones has been reported through multi-component reaction. ${ }^{14}$ The method also involves montmorillonite K10 clay-catalyzed reaction of 2naphthol, aryl aldehydes, and thiourea. ${ }^{14}$
Although several methods for the synthesis of 1,2-dihydro1 -arylnaphtho $[1,2-e][1,3]$ oxazine-3-ones and 1,2-dihydro-1arylnaphtho $[1,2-e][1,3]$ oxazine-3-thiones have been reported, there is still demand for simpler, less toxic, more effective, and milder catalysts. Our interest in developing mild and
 $X=0, s$
efficient synthetic methods that provide a variety of 1,2-dihydro-1-arylnaphtho[1,2-e][1,3]oxazine-3-ones and 1,2-dihydro-1-arylnaphtho [1,2-e][1,3]oxazine-3-thiones has led us to looking into more convenient and safely usable catalysts. Among these, we think tris(triphenylphosphine)ruthenium(II) dichloride is a viable alternative, and may be a promising catalyst for the synthesis of 1,2-dihydro-1-arylnaphtho [1,2-e][1,3]oxazine-3-ones and 1,2-dihydro-1-arylnaphtho $[1,2-e][1,3]$ oxazine-3-thiones, due to its easy availability, sustainability, and non-toxicity. ${ }^{16}$ Recently, we have reported $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$-catalyzed one-pot three-component reactions for the synthesis of biologically interesting 1-amidoalkyl-2-naphthols. ${ }^{17}$ As part of an ongoing study of the efficacy of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$-catalyzed three-component reactions, we report herein an efficient and facile synthesis of biologically interesting 1,2-dihydro-1-arylnaphtho[1,2-e][1,3] oxazine-3-ones and 1,2-dihydro-1-arylnaphtho[1,2-e][1,3] oxazine-3-thiones.

Results and Discussion

Recently, it has been reported that multi-component reactions of 2-naphthol (1) with benzaldehyde (2a) and urea (3a) in the presence of a number of catalysts and reagents such as $\mathrm{H}_{2} \mathrm{NSO}_{3} \mathrm{H}^{18}{ }^{18} \mathrm{HClO}_{4} / \mathrm{SiO}_{2}{ }^{19}$ 2,4,6-trichloro-1,3,5triazine, ${ }^{20} \mathrm{InCl}_{3},{ }^{21}$ and $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}^{22}$ afforded uncyclized product $\mathbf{4 a}$ in good yields, without any formation of cycloadduct 5a (Scheme 2).

To give cycloadduct 5a, reactions of 2-naphthol (1, 1.0 mmol) with benzaldehyde ($\mathbf{2 a}, 1.2 \mathrm{mmol}$) and urea (3a, 1.2 mmol) were first examined in the presence of $5 \mathrm{~mol} \%$ of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ in several solvents (Table 1). With methylene chloride and acetone in reflux for 12 h , uncyclized product 4a was produced in 54 and 43% yields, respectively. With acetonitrile in reflux for 20 h , both $\mathbf{4 a}(10 \%)$ and $\mathbf{5 a}(20 \%)$ were obtained. However, when toluene was used in reflux for 15 h , cyclized product 5a was only isolated in 93% yield. With DMF as a polar aprotic solvent, the desired product 5a was produced in 72% yield. Compound $\mathbf{5 a}$ was determined by analysis of its spectral data and by direct comparison with the reported data. ${ }^{11}$

In order to extend the utility of this methodology for the synthesis of a variety of 1,2-dihydro-1-arylnaphtho[1,2-

Scheme 2

Table 1. Reaction of 2-naphtol (1) with benzaldehyde (2a) and urea (3a) in the presence of $5 \mathrm{~mol} \%$ of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ in several solvents

Entry	Solvent	Condition	Yield (\%)	
			4a	5 a
1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	reflux, 12 h	54	0
2	acetone	reflux, 12h	43	0
3	$\mathrm{CH}_{3} \mathrm{CN}$	reflux, 20 h	10	20
4	toluene	reflux, 15 h	0	93
5	DMF	$150{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$	0	72

$e][1,3]$ oxazine-3-ones and 1,2-dihydro-1-arylnaphtho[1,2$e][1,3]$ oxazine-3-thiones, further reactions of 2 -naphthol with several aryl aldehydes and urea or thiourea were examined. These reactions were carried out in the presence of $5 \mathrm{~mol} \%$ of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ in refluxing toluene for $10-20 \mathrm{~h}$ using the optimized conditions described above. The results are summarized in Table 2. The aromatic aldehydes bearing electron-donating as well as electron-withdrawing groups underwent reactions successfully. Treatment of 2-naphthol with 4-methylbenzaldehyde and urea in the presence of 5 $\mathrm{mol} \%$ of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ in refluxing toluene for 15 h provided $\mathbf{5 b}$ in 90% yield (entry 1, Table 2). Reactions of 3methylbenzaldehyde, 4-methoxybenzaldehyde, and 3-methoxybenzaldehyde with urea afforded products $\mathbf{5 c - 5 e}$ in 74$84 \%$ yield (entries 2-4), whereas those of 4 -chlorobenzaldehyde, 4-nitrobenzaldehyde, and 2-nitrobenzaldehyde provided $\mathbf{5 f}-\mathbf{5 h}$ in $74-85 \%$ yield (entries 5-7). When thiourea was used instead of urea, the desired products were also produced. Reaction of 2-naphthol with benzaldehyde and thiourea in refluxing toluene for 18 h gave $\mathbf{5 i}$ in 74% yield (entry 8). Other aromatic aldehydes with electron-donating or withdrawing groups gave products $\mathbf{5 j} \mathbf{- 5 1}$ in $70-82 \%$ yield (entries 9-11). These reactions provided rapid synthetic approaches to various 1,2-dihydro-1-arylnaphtho [1,2-e][1,3] oxazine-3-ones $\mathbf{5 b} \mathbf{- 5 h}$ and 1,2-dihydro-1-arylnaphtho[1,2$e][1,3]$ oxazine-3-thiones 5i-51 in good yields.

The formation of $\mathbf{5 a}$ can be explained by the proposed mechanism through the acylimine intermediate or orthoquinone methide intermediate as shown in Scheme 3. Benz-

Table 2. $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$-catalyzed synthesis of avariety of 1,2-di-hydro-1-arylnaphtho [1,2-e][1,3]oxazine-3-ones $\mathbf{5 b - 5 h}$ and 1,2-di-hydro-1-arylnaphtho [1,2-e][1,3]oxazine-3-thiones 5i-51
$\begin{array}{lllll}\text { Entry } & \text { Aldehyde } & \text { Amide } & \text { Time } \\ \text { (h) }\end{array} \quad$ Product $\left.\quad \begin{array}{c}\text { Yield } \\ (\%)\end{array}\right]$

Scheme 3
aldehyde (2a) forms an oxygen-bonded complex in the presence of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ catalyst to give 6 , which is attacked by urea (3a) or by 2-naphthol (1) to produce the acylimine intermediate 7 or ortho-quinone intermediate 8 . The subsequent addition of 2-naphthol (1) to $\mathbf{7}$ or addition of urea (3a) to $\mathbf{8}$ gives another intermediate 4a, which undergoes cyclization reaction to yield the final product $\mathbf{5 a}$.

In summary, we have developed an efficient and general synthesis of 1,2-dihydro-1-arylnaphtho [1,2-e][1,3]oxazine3 -ones and 1,2-dihydro-1-arylnaphtho[1,2-e][1,3]oxazine-3thiones by $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$-catalyzed one-pot multi-component reactions of 2-naphthol with aromatic aldehydes and urea or thiourea. The advantages of these methodologies are easy handling, mild reaction conditions, and use of an effective and non-toxic catalyst. In particular, these methodologies provided a useful and attractive process for the synthesis of 1,2-dihydro-1-arylnaphtho[1,2-e][1,3]oxazine-3thiones.

Experimental

[α-(2-Hydroxynaphth-1-yl)benzyl]urea (4a). ${ }^{16}$ To a
mixture of 2-naphthol ($144 \mathrm{mg}, 1.0 \mathrm{mmol}$), benzaldehyde ($126 \mathrm{mg}, 1.2 \mathrm{mmol}$), and urea ($72 \mathrm{mg}, 1.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ was added $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(48 \mathrm{mg}, 0.05 \mathrm{mmol})$ under N_{2}. The mixture was heated under reflux for 12 h . After completion of reaction as indicated by TLC, the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel to give product $\mathbf{4 a}$ ($149 \mathrm{mg}, 54 \%$) as a white solid, $\mathrm{mp} 182-184{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 9.88(1 \mathrm{H}, \mathrm{s}), 7.77(2 \mathrm{H}, \mathrm{d}, J=8.1$ $\mathrm{Hz}), 7.71(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.48-7.08(10 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta 158.0,152.8,144.6,132.2,131.0$, $130.0,129.0,129.4,128.6,128.0,126.2,125.8,122.3$, 120.2, 118.4, 48.1; IR (KBr) 3408, 1722, 1624, 1531, 1277, 1061, $817 \mathrm{~cm}^{-1}$. HRMS $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: 292.1213. Found: 292.1212.

General Procedure for the Synthesis of 5a-51. To a mixture of 2-naphthol ($144 \mathrm{mg}, 1.0 \mathrm{mmol}$), aldehyde (1.2 $\mathrm{mmol})$, and urea or thiourea (1.2 mmol) in toluene (10 mL) was added $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(48 \mathrm{mg}, 0.05 \mathrm{mmol})$ under N_{2}. The mixture was heated under reflux for $10-12 \mathrm{~h}$. After completion of reaction as indicated by TLC, the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel to give product.
1-Phenyl-1,2-dihydro-naphtho[1,2-e][1,3]oxazin-3-one (5a): ${ }^{11}$ Yield 93% as a white solid; mp 176-179 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}$) $\delta 8.22(1 \mathrm{H}, \mathrm{br}), 7.79(2 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.34-7.20(8 \mathrm{H}, \mathrm{m}), 5.99$ $(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}$) $\delta 149.2$, 147.1, 141.7, 130.0, 129.4, 128.6, 128.2, 127.9, 127.4, 126.5, $126.4,124.2,122.0,116.2,112.7,54.3$; IR (KBr) 3452, 2371, 2281, 1727, 1399, 1223, 1170, 1113, $827 \mathrm{~cm}^{-1}$. HRMS $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NO}_{2}$: 275.0945. Found: 275.0946.
1-(4-Methyphenyl)-1,2-dihydro-naphtho [1,2-e] [1,3]oxa-zin-3-one (5b): ${ }^{11}$ Yield 90% as a white solid; mp 170-172 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}$) $\delta 8.03(1 \mathrm{H}, \mathrm{s})$, 7.78-7.74 ($2 \mathrm{H}, \mathrm{m}$), $7.53(1 \mathrm{H}, \mathrm{m}),, 7.36-7.31(2 \mathrm{H}, \mathrm{m}), 7.23$ $(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.12(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.02(2 \mathrm{H}, \mathrm{d}, J=$ $8.1 \mathrm{~Hz}), 5.94(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}), 2.20(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.8,147.3,138.6,138.4,130.8,130.3$, $129.8,129.1,128.6,127.2,126.6,124.9,122.6,116.9,112.4$, 55.8, 20.9; IR (KBr) 3242, 3137, 2362, 1723, 1512, 1390, 1222, 1115, $817 \mathrm{~cm}^{-1}$. HRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{2}$: 289.1100. Found: 289.1103.

1-(3-Methyphenyl)-1,2-dihydro-naphtho[1,2-e][1,3]oxazin-3-one (5c): Yield 77% as a white solid; mp $205-206{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}$) $\delta 8.59(1 \mathrm{H}, \mathrm{br}), 8.00-$ $7.90(2 \mathrm{H}, \mathrm{m}), 7.81-7.75(1 \mathrm{H}, \mathrm{m}), 7.55-7.49(2 \mathrm{H}, \mathrm{m}), 7.42$ $(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.24-7.16(3 \mathrm{H}$, m), $6.14(1 \mathrm{H}, \mathrm{s}), 2.37(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- d_{6}) $\delta 149.5,147.3,142.0,138.1,130.2,129.7,128.9$, 128.5, 128.4, 128.2,127.3, 126.9, 124.5, 123.8, 122.3, 116.5, 113.1, 54.5, 20.9; IR (KBr) 3144, 2960, 1746, 1388, 1221, 1114, $990,926,793 \mathrm{~cm}^{-1}$. HRMS $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{2}$: 289.1102 . Found: 289.1103.
1-(4-Methoxyphenyl)-1,2-dihydro-naphtho[1,2-e][1,3] oxazin-3-one (5d): ${ }^{12}$ Yield 84% as a white solid; mp 206$208{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(2 \mathrm{H}, \mathrm{d}, J=8.7$
$\mathrm{Hz}), 7.56-7.53(1 \mathrm{H}, \mathrm{m}), 7.39-7.36(2 \mathrm{H}, \mathrm{m}), 7.30(1 \mathrm{H}, \mathrm{d}, J=$ $\left.9.0 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right), 7.17(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.81(2 \mathrm{H}, \mathrm{d}, J=8.1$ $\mathrm{Hz}), 6.17(1 \mathrm{H}, \mathrm{s}), 6.01(1 \mathrm{H}, \mathrm{s}), 3.72(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}) \delta 162.3,159.8,147.6,134.1,131.0,130.5,129.4$, $128.8,128.2,127.4,125.1,122.9,117.2,114.7,112.8,55.7$, 55.3; IR (KBr) 3151, 2962, 1738, 1513, 1389, 1255, 1222, $1179,1113,1027,919,834,742 \mathrm{~cm}^{-1}$. HRMS $m / z\left(\mathrm{M}^{+}\right)$ calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{3}: 305.1050$. Found: 305.1052 .

1-(3-Methoxyphenyl)-1,2-dihydro-naphtho[1,2-e][1,3] oxazin-3-one (5e): ${ }^{11}$ Yield 74% as a white solid; mp 186$188{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- d_{6}) $\delta 8.17(1 \mathrm{H}$, br), 7.73-7.68 $(2 \mathrm{H}, \mathrm{m}), 7.48-7.45(1 \mathrm{H}, \mathrm{m}), 7.29-7.26(2 \mathrm{H}$, m), $7.17(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.09(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.68$ $(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 5.89(1 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}), 3.60(3 \mathrm{H}, \mathrm{s})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.3,159.7,150.2,147.6$, 134.1, 131.0, 130.5, 129.4, 128.8, 128.2, 127.9, 127.4, 125.2, 122.9, 117.1, 114.7, 112.8, 55.6, 55.3; IR (KBr) 3149, 2961, 1737, 1512, 1387, 1254, 1220, 1178, 1113, 1025, 917, 833, $738 \mathrm{~cm}^{-1}$. HRMS $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{3}: 305.1054$. Found: 305.1052.

1-(4-Chlorophenyl)-1,2-dihydro-naphtho[1,2-e][1,3]oxa-zin-3-one (5f): ${ }^{10}$ Yield 75% as a white solid; mp 216-219 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- d_{6}) $\delta 8.73(1 \mathrm{H}, \mathrm{d}, J$ $=2.1 \mathrm{~Hz}), 7.85(2 \mathrm{H}, \mathrm{dd}, J=9.6,10.2 \mathrm{~Hz}), 7.61(1 \mathrm{H}, \mathrm{d}, J=$ $7.8 \mathrm{~Hz}), 7.42-7.26(7 \mathrm{H}, \mathrm{m}), 6.09(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}$) δ 149.1, 147.4, 141.0, $132.9,130.3,130.1,128.7,128.6,128.5,128.4,127.1$, 124.7, 122.5, 116.5, 112.9, 53.4; IR (KBr) 3147, 2964, 1736, 1390, 1226, 1180, 1117, 997, 920, $831 \mathrm{~cm}^{-1}$. HRMS m / z $\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{ClNO}_{2}$: 309.0560. Found: 309.0557.

1-(4-Nitrophenyl)-1,2-dihydro-naphtho[1,2-e][1,3]oxazin-3-one (5g): ${ }^{11}$ Yield 85% as a white solid; mp 170-174 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 9.05(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 8.19$ $(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 8.02(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.96(1 \mathrm{H}, \mathrm{d}, J=$ $7.2 \mathrm{~Hz}), 7.81(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.60(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$, 7.52-7.40 $(3 \mathrm{H}, \mathrm{m}), 6.42(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.0,148.1,147.9,147.8,131.4,131.1$, 129.2, 129.0, 128.1, 127.9, 125.6, 124.7, 122.2, 117.1, 112.5, 55.2; IR (KBr) 3142, 2959, 1732, 1523, 1345, 1221, 1115, 926, 822, $757 \mathrm{~cm}^{-1}$. HRMS $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$: 320.0794. Found: 320.0797 .

1-(2-Nitrophenyl)-1,2-dihydro-naphtho[1,2-e][1,3]oxazin-3-one (5h): ${ }^{11}$ Yield 74% as a yellow solid; mp 104-106 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.93$ $(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.86(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.49-7.30(5 \mathrm{H}$, m), $7.13(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.89(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 6.56$ $(2 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 148.8$, $148.7,148.0,135.3,131.5,130.9,130.3,130.2,129.3$, $129.3,128.3,125.9,125.7,122.8,117.3,112.1,49.7$; IR (KBr) 3267, 2923, 2372, 1723, 1522, 1382, 1345, 1224, $1189,798 \mathrm{~cm}^{-1}$. HRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$: 320.0795. Found: 320.0797 .

1-Phenyl-1,2-dihydro-naphtho[1,2-e][1,3]oxazin-3-thione (5i): Yield 74% as a yellow solid; mp 208-210 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(1 \mathrm{H}, \mathrm{br}), 7.87-7.80(2 \mathrm{H}, \mathrm{m}), 7.52-$ $7.47(1 \mathrm{H}, \mathrm{m}), 7.47-7.37(3 \mathrm{H}, \mathrm{m}), 7.31-7.19(5 \mathrm{H}, \mathrm{m}), 5.99$ $(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 181.4,146.5,140.2$,
131.4, 130.9, 129.5, 129.1, 129.0, 128.9, 127.7, 127.3, 125.7, 122.7, 116.6, 56.3; IR (KBr) 3159, 3055, 2368, 1631, 1557, 1515, 1409, 1308, 1184, $828 \mathrm{~cm}^{-1}$. HRMS $m / z\left(\mathrm{M}^{+}\right)$ calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NOS}: 291.0721$. Found: 291.0718.
1-(4-Methoxyphenyl)-1,2-dihydro-naphtho[1,2-e][1,3] oxazin-3-thione (5j): Yield 70% as a white solid; mp 190$192{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21(1 \mathrm{H}, \mathrm{br}), 7.85-$ $7.80(2 \mathrm{H}, \mathrm{m}), 7.53-7.49(1 \mathrm{H}, \mathrm{m}), 7.42-7.36(3 \mathrm{H}, \mathrm{m}), 7.17$ $(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.80(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 5.95(1 \mathrm{H}, \mathrm{d}, J=$ 1.8 Hz), $3.69(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.0$, $159.9,146.4,132.5,131.4,130.8,129.0,128.9,128.6,127.6$, 125.6, 122.8, 116.5, 114.8, 111.9, 55.8, 55.3; IR (KBr) 3178, 3054, 1631, 1613, 1557, 1512, 1306, 1259, 1182, 1152, 1027, 922, 827, $742 \mathrm{~cm}^{-1}$. HRMS $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}$: 321.0821 . Found: 321.0824.

1-(3-Methoxyphenyl)-1,2-dihydro-naphtho[1,2-e][1,3] oxazin-3-thione (5k): Yield 71% as a yellow solid; $\mathrm{mp} 180-$ $182{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17(1 \mathrm{H}, \mathrm{br}), 7.87-$ $7.80(2 \mathrm{H}, \mathrm{m}), 7.54-7.51(1 \mathrm{H}, \mathrm{m}), 7.44-7.32(3 \mathrm{H}, \mathrm{m}), 7.21-$ $7.18(1 \mathrm{H}, \mathrm{m}), 6.84(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.77(2 \mathrm{H}, \mathrm{d}, J=6.9$ $\mathrm{Hz}), 5.96(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 3.69(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 181.8,162.4,160.6,146.7,141.8,131.5$, $130.9,130.6,129.2,128.9,127.7,125.7,122.8,119.5,116.6$, $114.3,113.3,56.4,55.3$; IR (KBr) 3178, 3052, 2947, 1714, $1598,1544,1316,1259,1157,1040,930,817,748 \mathrm{~cm}^{-1}$. HRMS $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}: 321.0822$. Found: 321.0824.

1-(4-Nitrophenyl)-1,2-dihydro-naphtho[1,2-e][1,3]oxa-zin-3-thione (5I): Yield 82% as a white solid; mp 135-138 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.13(1 \mathrm{H}, \mathrm{br}), 8.11(2 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}), 7.91(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.87-7.84(1 \mathrm{H}, \mathrm{m})$, 7.45-7.37 ($6 \mathrm{H}, \mathrm{m}$), $6.14(1 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 181.4,148.0,146.5,146.5,131.6,131.5$, 129.2, 128.5, 128.4, 128.2, 126.1, 124.7, 122.1, 116.4, 110.6, 54.5; IR (KBr) 3070, 2943, 1607, 1521, 1343, 1160, 822, $744 \mathrm{~cm}^{-1}$. HRMS $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: 336.0566$. Found: 336.0569.

Acknowledgments. This study was supported by grant No. RTI04-01-04 from the Regional Technology Innovation Program of the Ministry of Knowledge Economy (MKE).

References

1. (a) Waxman, L.; Darke, P. L. Antiviral Chem. Chemother. 2000, 11, 1. (b) Patel, M.; Ko, S. S.; McHugh, R. J., Jr.; Markwalder, J. A.; Srivastava, A. S.; Cordova, B. C.; Klabe, R. M.; EricksonVitanen, S.; Trainor, G. L.; Seitz, S. P.; Bioorg. Med. Chem. Lett. 1999, 9, 2805. (c) Patel, M.; McHugh, R. J., Jr.; Cordova, B. C.; Klabe, R. M.; Erickson-Vitanen, S.; Trainor, G. L.; Ko, S. S. Bioorg. Med. Chem. Lett. 1999, 9, 3221. (d) Klasek, A.; Koristek,
K.; Polis, J.; Kosmrlj, J. Tetrahedron 2000, 56, 1551.
2. (a) Kalluraya, B.; Sreenivasa, S. Farmaco 1998, 53, 399. (b) Larsen, R. D.; Corley, E. G.; King, A. O.; Carroll, J. D.; Davis, P.; Verhoeven, T. R.; Reider, P. J.; Labelle, M.; Gauthier, J. Y.; Xiang, Y. B.; Zamboni, R. J. J. Org. Chem. 1996, 61, 3398. (c) Maguire, M. P.; Sheets, K. R.; McVety, K.; Spada, A. P.; Zilberstein, A. J. Med. Chem. 1994, 37, 2129. (d) Chen, Y. L.; Fang, K. C.; Sheu, J. Y.; Hsu, S. L.; Tzeng, C. C. J. Med. Chem. 2001, 44, 2374. (e) Dube, D.; Blouin, M.; Brideau, C.; Chan, C. C.; Desmarais, S.; Ethier, D.; Falgueyret, J. P.; Friesen, R. W.; Girard, M.; Girard, Y.; Guay, J.; Riendeau, D.; Tagari, P.; Young, R. N. Bioorg. Med. Chem. Lett. 1998, 8, 1255.
3. Iwahashi, M.; Kobayashi, K.; Nambu, F. Int. Patent Appl. WO 2003078409 A1, 2003.
4. Vianello, P.; Bandiera, T. U.S. Patent Appl. US 20030073688 A1, 2003.
5. Anderluh, M.; Cesar, J.; Stefanic, P.; Kikelj, D.; Janes, D.; Murn, J. Nadrah, K.; Tominc, M.; Addicks, E.; Giannis, A.; Stegnar, M.; Dolenc, M. S. Eur. J. Med. Chem. 2005, 40, 25.
6. Kajino, M.; Shibouta, Y.; Nishikawa, K.; Meguro, K. Chem. Pharm. Bull. 1991, 39, 2896.
7. Gellibert, F. J.; Payne, A. H. Int. Patent Appl. WO 2003097639 A1, 2003.
8. Nicolaiders, D. N.; Gautam, D. R.; Litinas, K. E.; Hadjipavlon-Litina, D. J.; Kontogiorgis, C. A. J. Heterocycl. Chem. 2004, 41, 605.
9. Bethiel, R. S.; Ludeboer, M. U.S. Patent Appl. US 20040097504 A1, 2004.
10. Kumar, A.; Saxena, A.; Dewan, M.; De, A.; Mozumdar, S. Tetrahedron Lett. 2011, 52, 4835.
11. Jiang, C.; Geng, X.; Zhang, Z.; Xu, H.; Wang, C. J. Chem. Res. 2010, 34, 19.
12. Ahangar, H. A.; Mahdavinia, G. H.; Marjani, K.; Hafezian, A. J. Iran. Chem. Soc. 2010, 7, 770.
13. Chaskar, A.; Vyavhare, V.; Padalkar, V.; Phatangare, K.; Deokar, H. J. Serb. Chem. Soc. 2011, 76, 21.
14. Kantevari, S.; Vuppalapati, S. V. N.; Bantu, R.; Nagarapu, L. J. Heterocycl. Chem. 2010, 47, 313.
15. Nizam, A.; Päsha, M. A. Synth. Commun. 2010, 40, 2864.
16. (a) Li, W.-F.; Xie, X.-M.; Tao, X.-M.; Ma, X.; Fan, W.-Z.; Li, X.M.; Zhang, Z.-G. RSC Advances 2012, 2, 3214. (b) Terashima, T.; Ouchi, M.; Ando, T.; Kamigaito, M.; Sawamoto, M. Macromolecules 2007, 40, 3581. (c) Paris, S. I. M.; Lemke, F. R. Inorg. Chem. Commun. 2005, 8, 425. (d) Cho, C. S.; Kim, B. T.; Kim, H.-S.; Kim, T.-J.; Shim, S. C. Organometallics 2003, 22, 3608. (e) Srivastava, V. K.; Shukla, R. S.; Bajaj, H. C.; Jasra, R. V. J. Mol. Catal. A-Chem. 2003, 202, 65. (f) Graban, E.; Lemke, F. R. Organometallics 2002, 21, 3823. (g) Csjernyik, G.; Ell, A. H.; Fadini, L.; Pugin, B.; Bäckvall, J.-E. J. Org. Chem. 2002, 67, 1657. (h) Cho, C. S.; Kim, B. T.; Kim, T.-J.; Shim, S. C. J. Org. Chem. 2001, 66, 9020.
17. Zhu, X.; Lee, Y. R.; Kim, S. H. Bull. Korean Chem. Soc. 2012, 33, 2799.
18. Nagawade, R. R.; Shinde, D. B. Chin. J. Chem. 2007, 25, 1710.
19. Das, B.; Kumar, D. N.; Laxminarayana, K.; Ravikanth, B. Helv. Chim. Acta 2007, 90, 1330.
20. Zhang, P.; Zhang, Z. H. Monatsh. Chem. 2009, 140, 199.
21. Chavan, N. L.; Naik, P. N.; Nayak, S. K.; Kusurkar, R. S. Synth. Comтии. 2010, 40, 2941.
22. Rani, V. J.; Suresh, M.; Lavanya, P.; Vani, K. V.; Nagarjuna, B.; Rao, C. V. Der Pharma Chemica 2010, 6, 224.
