• Title/Summary/Keyword: Facial segmentation

Search Result 47, Processing Time 0.022 seconds

Automated Facial Wrinkle Segmentation Scheme Using UNet++

  • Hyeonwoo Kim;Junsuk Lee;Jehyeok, Rew;Eenjun Hwang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2333-2345
    • /
    • 2024
  • Facial wrinkles are widely used to evaluate skin condition or aging for various fields such as skin diagnosis, plastic surgery consultations, and cosmetic recommendations. In order to effectively process facial wrinkles in facial image analysis, accurate wrinkle segmentation is required to identify wrinkled regions. Existing deep learning-based methods have difficulty segmenting fine wrinkles due to insufficient wrinkle data and the imbalance between wrinkle and non-wrinkle data. Therefore, in this paper, we propose a new facial wrinkle segmentation method based on a UNet++ model. Specifically, we construct a new facial wrinkle dataset by manually annotating fine wrinkles across the entire face. We then extract only the skin region from the facial image using a facial landmark point extractor. Lastly, we train the UNet++ model using both dice loss and focal loss to alleviate the class imbalance problem. To validate the effectiveness of the proposed method, we conduct comprehensive experiments using our facial wrinkle dataset. The experimental results showed that the proposed method was superior to the latest wrinkle segmentation method by 9.77%p and 10.04%p in IoU and F1 score, respectively.

Facial Image Segmentation using Wavelet Transform (웨이브렛 변환을 적용한 얼굴영상분할)

  • 김장원;박현숙;김창석
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.3
    • /
    • pp.45-52
    • /
    • 2000
  • In this study, we propose the image segmentation algorithm for facial region segmentation. The proposed algorithm separates the mean image of low frequency band from the differential image of high frequency band in order to make a boundary using HWT, and then we reduce the isolation pixels, projection pixels, and overlapped boundary pixels from the low frequency band. Also the boundaries are detected and simplified by the proposed boundary detection algorithm, which are cleared on the thinning process of 1 pixel unit. After extracting facial image boundary by using the proposed algorithm, we make the mask and segment facial image through matching original image. In the result of facial region segmentation experiment by using the proposed algorithm, the successive facial segmentation have 95.88% segmentation value.

  • PDF

Development of a Deep Learning-Based Automated Analysis System for Facial Vitiligo Treatment Evaluation (안면 백반증 치료 평가를 위한 딥러닝 기반 자동화 분석 시스템 개발)

  • Sena Lee;Yeon-Woo Heo;Solam Lee;Sung Bin Park
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.95-100
    • /
    • 2024
  • Vitiligo is a condition characterized by the destruction or dysfunction of melanin-producing cells in the skin, resulting in a loss of skin pigmentation. Facial vitiligo, specifically affecting the face, significantly impacts patients' appearance, thereby diminishing their quality of life. Evaluating the efficacy of facial vitiligo treatment typically relies on subjective assessments, such as the Facial Vitiligo Area Scoring Index (F-VASI), which can be time-consuming and subjective due to its reliance on clinical observations like lesion shape and distribution. Various machine learning and deep learning methods have been proposed for segmenting vitiligo areas in facial images, showing promising results. However, these methods often struggle to accurately segment vitiligo lesions irregularly distributed across the face. Therefore, our study introduces a framework aimed at improving the segmentation of vitiligo lesions on the face and providing an evaluation of vitiligo lesions. Our framework for facial vitiligo segmentation and lesion evaluation consists of three main steps. Firstly, we perform face detection to minimize background areas and identify the face area of interest using high-quality ultraviolet photographs. Secondly, we extract facial area masks and vitiligo lesion masks using a semantic segmentation network-based approach with the generated dataset. Thirdly, we automatically calculate the vitiligo area relative to the facial area. We evaluated the performance of facial and vitiligo lesion segmentation using an independent test dataset that was not included in the training and validation, showing excellent results. The framework proposed in this study can serve as a useful tool for evaluating the diagnosis and treatment efficacy of vitiligo.

Face and Iris Detection Algorithm based on SURF and circular Hough Transform (서프 및 하프변환 기반 운전자 동공 검출기법)

  • Artem, Lenskiy;Lee, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.175-182
    • /
    • 2010
  • The paper presents a novel algorithm for face and iris detection with the application for driver iris monitoring. The proposed algorithm consists of the following major steps: Skin-color segmentation, facial features segmentation, and iris positioning. For the skin-segmentation we applied a multi-layer perceptron to approximate the statistical probability of certain skin-colors, and filter out those with low probabilities. The next step segments the face region into the following categories: eye, mouth, eye brow, and remaining facial regions. For this purpose we propose a novel segmentation technique based on estimation of facial class probability density functions (PDF). Each facial class PDF is estimated on the basis of salient features extracted from a corresponding facial image region. Then pixels are classified according to the highest probability selected from four estimated PDFs. The final step applies the circular Hough transform to the detected eye regions to extract the position and radius of the iris. We tested our system on two data sets. The first one is obtained from the Web and contains faces under different illuminations. The second dataset was collected by us. It contains images obtained from video sequences recorded by a CCD camera while a driver was driving a car. The experimental results are presented, showing high detection rates.

Facial Region Segmentation using Watershed Algorithm based on Depth Information (깊이정보 기반 Watershed 알고리즘을 이용한 얼굴영역 분할)

  • Kim, Jang-Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.4
    • /
    • pp.225-230
    • /
    • 2011
  • In this paper, we propose the segmentation method for detecting the facial region by using watershed based on depth information and merge algorithm. The method consists of three steps: watershed segmentation, seed region detection, and merge. The input color image is segmented into the small uniform regions by watershed. The facial region can be detected by merging the uniform regions with chromaticity and edge constraints. The problem in the existing method using only chromaticity or edge can solved by the proposed method. The computer simulation is performed to evaluate the performance of the proposed method. The simulation results shows that the proposed method is superior to segmentation facial region.

A facial expressions recognition algorithm using image area segmentation and face element (영역 분할과 판단 요소를 이용한 표정 인식 알고리즘)

  • Lee, Gye-Jeong;Jeong, Ji-Yong;Hwang, Bo-Hyun;Choi, Myung-Ryul
    • Journal of Digital Convergence
    • /
    • v.12 no.12
    • /
    • pp.243-248
    • /
    • 2014
  • In this paper, we propose a method to recognize the facial expressions by selecting face elements and finding its status. The face elements are selected by using image area segmentation method and the facial expression is decided by using the normal distribution of the change rate of the face elements. In order to recognize the proper facial expression, we have built database of facial expressions of 90 people and propose a method to decide one of the four expressions (happy, anger, stress, and sad). The proposed method has been simulated and verified by face element detection rate and facial expressions recognition rate.

Detection of Face and Facial Features in Complex Background from Color Images (복잡한 배경의 칼라영상에서 Face and Facial Features 검출)

  • 김영구;노진우;고한석
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.69-72
    • /
    • 2002
  • Human face detection has many applications such as face recognition, face or facial feature tracking, pose estimation, and expression recognition. We present a new method for automatically segmentation and face detection in color images. Skin color alone is usually not sufficient to detect face, so we combine the color segmentation and shape analysis. The algorithm consists of two stages. First, skin color regions are segmented based on the chrominance component of the input image. Then regions with elliptical shape are selected as face hypotheses. They are certificated to searching for the facial features in their interior, Experimental results demonstrate successful detection over a wide variety of facial variations in scale, rotation, pose, lighting conditions.

  • PDF

Face Detection using Orientation(In-Plane Rotation) Invariant Facial Region Segmentation and Local Binary Patterns(LBP) (방향 회전에 불변한 얼굴 영역 분할과 LBP를 이용한 얼굴 검출)

  • Lee, Hee-Jae;Kim, Ha-Young;Lee, David;Lee, Sang-Goog
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.692-702
    • /
    • 2017
  • Face detection using the LBP based feature descriptor has issues in that it can not represent spatial information between facial shape and facial components such as eyes, nose and mouth. To address these issues, in previous research, a facial image was divided into a number of square sub-regions. However, since the sub-regions are divided into different numbers and sizes, the division criteria of the sub-region suitable for the database used in the experiment is ambiguous, the dimension of the LBP histogram increases in proportion to the number of sub-regions and as the number of sub-regions increases, the sensitivity to facial orientation rotation increases significantly. In this paper, we present a novel facial region segmentation method that can solve in-plane rotation issues associated with LBP based feature descriptors and the number of dimensions of feature descriptors. As a result, the proposed method showed detection accuracy of 99.0278% from a single facial image rotated in orientation.

Automatic Segmentation of the Mandible using Shape-Constrained Information in Cranio-Maxillo-Facial CBCT Images (두개악안면 CBCT 영상에서 형상제약 정보를 사용한 하악골 자동 분할)

  • Kim, Joojin;Lee, Min Jin;Hong, Helen
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.5
    • /
    • pp.19-27
    • /
    • 2017
  • In this paper, we propose an automatic segmentation method of the mandible using shape-constrained information in cranio-maxillo-facial CBCT images. The proposed method consists of the following two steps. First, the mandible segmentation based on the global shape information is performed through the statistical shape model generated using the MDCT images. Second, improvement of mandible segmentation is performed considering the local shape information and intensity characteristics of the mandible. To evaluate the performance of the proposed method, the proposed method was evaluated qualitatively and quantitatively based on the results of manual segmentation by expert. Experimental results show that the Dice Similarity Coefficient of the proposed method was 95.64% and 90.97%, respectively, in the mandible body region including the narrow region of large curvature and the condyle region with large positional variance.

Multiple Face Segmentation and Tracking Based on Robust Hausdorff Distance Matching

  • Park, Chang-Woo;Kim, Young-Ouk;Sung, Ha-Gyeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.632-635
    • /
    • 2003
  • This paper describes a system fur tracking multiple faces in an input video sequence using facial convex hull based facial segmentation and robust hausdorff distance. The algorithm adapts skin color reference map in YCbCr color space and hair color reference map in RGB color space for classifying face region. Then, we obtain an initial face model with preprocessing and convex hull. For tracking, this algorithm computes displacement of the point set between frames using a robust hausdorff distance and the best possible displacement is selected. Finally, the initial face model is updated using the displacement. We provide an example to illustrate the proposed tracking algorithm, which efficiently tracks rotating and zooming faces as well as existing multiple faces in video sequences obtained from CCD camera.

  • PDF