• 제목/요약/키워드: Face expression

검색결과 456건 처리시간 0.027초

Gabor 웨이브렛과 FCM 군집화 알고리즘에 기반한 동적 연결모형에 의한 얼굴표정에서 특징점 추출 (Feature-Point Extraction by Dynamic Linking Model bas Wavelets and Fuzzy C-Means Clustering Algorithm)

  • 신영숙
    • 인지과학
    • /
    • 제14권1호
    • /
    • pp.10-10
    • /
    • 2003
  • 본 논문은 Gabor 웨이브렛 변환을 이용하여 무표정을 포함한 표정영상에서 얼굴의 주요 요소들의 경계선을 추출한 후, FCM 군집화 알고리즘을 적용하여 무표정 영상에서 저차원의 대표적인 특징점을 추출한다. 무표정 영상의 특징점들은 표정영상의 특징점들을 추출하기 위한 템플릿으로 사용되어지며, 표정영상의 특징점 추출은 무표정 영상의 특징점과 동적 연결모형을 이용하여 개략적인 정합과 정밀한 정합 과정의 두단계로 이루어진다. 본 논문에서는 Gabor 웨이브렛과 FCM 군집화 알고리즘을 기반으로 동적 연결모형을 이용하여 표정영상에서 특징점들을 자동으로 추출할 수 있음을 제시한다. 본 연구결과는 자동 특징추출을 이용한 차원모형기반 얼굴 표정인식[1]에서 얼굴표정의 특징점을 자동으로 추출하는 데 적용되었다.

얼굴에서 거리 측정에 의한 노래 플레이어 (Song Player by Distance Measurement from Face)

  • 신성윤;이민혜;신광성;이현창
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.667-669
    • /
    • 2022
  • 본 논문에서는 개인의 표정을 인식하여 그에 맞는 음악을 연주하는 시스템인 Face Song Player를 제시한다. 얼굴 윤곽선에 대한 정보를 연구하고 평균을 추출하여 얼굴형 정보를 획득한다. 학습용 DB는 MUCT DB를 사용하였다. 표정 인식을 위해 무표정 영상을 기반으로 각 표정의 특성 차이를 이용하여 알고리즘을 설계하였다.

  • PDF

3D캐릭터콘텐츠제작을 위한 표정에 관한 연구 (A Study on Facial expressions for the developing 3D-Character Contents)

  • 윤봉식;김영순
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2004년도 춘계 종합학술대회 논문집
    • /
    • pp.478-484
    • /
    • 2004
  • 이 연구는 비언어적 감성기호인 인간의 표정에 관한 것으로 3D캐릭터콘텐츠제작을 위한 기반 연구로 진행되었다. 인간의 감정과 표현에는 일종의 연계성이 있으며 인간의 표정에 나타나는 감성기호에는 일정한 패턴의 체계가 존재한다. 인간의 풍부하고 복잡 미묘한 감성은 감정이라는 형태로 표출되어지고, 복합적이고 세세한 감정의 형태를 모두 통제하는 것은 불가능하리라 사료되나, 감정의 영역에 대한 적정한 일체화 행위를 통하여 각 감정 영역별 흐름을 찾을 수 있을 것으로 기대된다. 표정 이외의 인간의 다른 행동들 역시 이처럼 특징적인 형태, 유사성 등이 존재하나 본 연구에서는 인간의 표정에 제한하여 연구를 실시하였고, 연구를 통하여 보다 편리한 표정제작에 도움이 될 수 있는 감정의 표출 형태 중 표정의 범주화를 실시코자 한다.

  • PDF

A Video Expression Recognition Method Based on Multi-mode Convolution Neural Network and Multiplicative Feature Fusion

  • Ren, Qun
    • Journal of Information Processing Systems
    • /
    • 제17권3호
    • /
    • pp.556-570
    • /
    • 2021
  • The existing video expression recognition methods mainly focus on the spatial feature extraction of video expression images, but tend to ignore the dynamic features of video sequences. To solve this problem, a multi-mode convolution neural network method is proposed to effectively improve the performance of facial expression recognition in video. Firstly, OpenFace 2.0 is used to detect face images in video, and two deep convolution neural networks are used to extract spatiotemporal expression features. Furthermore, spatial convolution neural network is used to extract the spatial information features of each static expression image, and the dynamic information feature is extracted from the optical flow information of multiple expression images based on temporal convolution neural network. Then, the spatiotemporal features learned by the two deep convolution neural networks are fused by multiplication. Finally, the fused features are input into support vector machine to realize the facial expression classification. Experimental results show that the recognition accuracy of the proposed method can reach 64.57% and 60.89%, respectively on RML and Baum-ls datasets. It is better than that of other contrast methods.

HEEAS: 감정표현 애니메이션 알고리즘과 구현에 관한 연구 (HEEAS: On the Implementation and an Animation Algorithm of an Emotional Expression)

  • 김상길;민용식
    • 한국콘텐츠학회논문지
    • /
    • 제6권3호
    • /
    • pp.125-134
    • /
    • 2006
  • 본 논문은 음성이 인간에게 전달되어 나타나는 여러 가지 감정 표현 중에서 단지 4가지 감정 즉 두려움, 싫증, 놀람 그리고 중성에 대한 감정 표현이 얼굴과 몸동작에 동시에 나타내는 애니메이션 시스템인 HEEAS(Human Emotional Expression Animation System)를 구현하는데 그 주된 목적이 있다. 이를 위해서 본 논문에서는 감정 표현이 풍부한 한국인 20대 청년을 모델로 설정하였다. 또한 입력되어진 음성 신호를 통해서 추출된 감정표현에 대한 데이터를 얼굴코드와 몸동작코드를 부여하고 이를 데이터 베이스화 하여 실제 애니메이션 구현을 하기 위한 처리의 시간을 최소화하였다. 즉, 입력되어진 음성 신호를 이용해서 원하는 결과인 얼굴, 몸동작에 대한 자료를 이진 검색을 이용해서 데이터베이스에서 찾으므로 검색 시간을 최소화하였다. 실제 감정 표현에 대한문제들을 실험을 통해서 얻은 결과가 99.9%의 정확도임을 알 수가 있었다.

  • PDF

비대면 화상 플랫폼에서의 패션 이미지 표현 특성 -20~30대 한국 직장인 여성을 중심으로- (Fashion Image Expression on Video Conferencing Platforms -Focusing on Korean Female Office Workers in Their 20s and 30s-)

  • 임수진;하지수
    • 한국의류학회지
    • /
    • 제48권1호
    • /
    • pp.20-36
    • /
    • 2024
  • Over the past three years, even amidst viral threats, a notable shift towards online interactions has been observed. This trend persists the presence of significant viral concerns. Our study centered on female office workers in their twenties and thirties in Korea, seeking to comprehend how they enhance and present their external image in the digital era. We explored the use of digital devices and fashion choices that enable them to amplify their self-expression in video conferences. Using a mix of surveys and in-depth interviews, we employed snowball sampling to recruit twelve participants. These women were given the opportunity to shape their digital persona either to uphold their current image or to adapt it for interactions where they weren't face-to-face. Their desired images fell into three distinct categories: an authoritative professional image, a clean modern image, and a natural image. Depending on the context, the participants aimed to convey these images independently or in various combinations. Our findings suggest the need to develop strategies for acknowledging and projecting individual fashion identities in non-face-to-face interactions. Such strategies would empower individuals to better align their online personas with their desired self-image, whether it's professional, modern, clean, natural, or a combination thereof.

오류-역전파 신경망 기반의 얼굴 검출 및 포즈 추정 (Back-Propagation Neural Network Based Face Detection and Pose Estimation)

  • 이재훈;전인자;이정훈;이필규
    • 정보처리학회논문지B
    • /
    • 제9B권6호
    • /
    • pp.853-862
    • /
    • 2002
  • 얼굴 검출은 디지털화 된 임의의 정지 영상 혹은 연속된 영상으로부터 얼굴 존재유무를 판단하고, 얼굴이 존재할 경우 영상 내 얼굴의 위치, 방향, 크기 등을 알아내는 기술로 정의된다. 이러한 얼굴 검출은 얼굴 인식이나 표정인식, 헤드 제스쳐 등의 기초 기술로서해당 시스템의 성능에 매우 중요한 변수 중에 하나이다. 그러나 영상 내의 얼굴은 표정, 포즈, 크기, 빛의 방향 및 밝기, 안경, 수염 등의 환경적 변화로 인해 얼굴 모양이 다양해지므로 정확하고 빠른 검출이 어렵다. 따라서 본 논문에서는 오류-역전파 신경망을 사용하여 몇가지 환경적 조건을 극복한 정확하고 빠른 얼굴 검출 방법을 제안한다. 제안된 방법은 표정과 포즈, 배경에 무관하게 얼굴을 검출하면서도 빠른 검출이 가능하다. 이를 위해 신경망을 이용하여 얼굴 검출을 수행하고, 검색 영역의 축소와 신경망 계산 시간의 단축으로 검출 응답 시간을 빠르게 하였다. 검색 영역의 축소는 영상 내 피부색 영역의 분할과 차영상을 이용하였고, 주성분 분석을 통해 신경망의 입력 백터를 축소시킴으로써 신경망 수행 시간과 학습 시간을 단축시켰다. 또, 추출된 얼굴 영상에서 포즈를 추정하고 눈 영역을 검출함으로써 얼굴 정보의 사용에 있어 보다 많은 정보를 추출할 수 있도록 하였다. 얼굴 검출 실험은 마할라노비스 거리를 사용하여 검출된 영상의 얼굴 여부를 판정하고, 성공률과 시간을 측정하였다. 정지 영상과 동영상에서 모두 실험하였으며, 피부색 영역의 분할을 사용할 경우 입력 영상의 칼라 설정의 유무에 다른 검출 성공률의 차를 보였다. 포즈 실험도 같은 조건에서 수행되었으며, 눈 영역의 검출은 안경의 유무에 다른 실험 결과를 보였다. 실험 결과 실시간 시스템에 사용 가능한 수준의 검색률과 검색 시간을 보였다.

얼굴 특징 변화에 따른 휴먼 감성 인식 (Human Emotion Recognition based on Variance of Facial Features)

  • 이용환;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제16권4호
    • /
    • pp.79-85
    • /
    • 2017
  • Understanding of human emotion has a high importance in interaction between human and machine communications systems. The most expressive and valuable way to extract and recognize the human's emotion is by facial expression analysis. This paper presents and implements an automatic extraction and recognition scheme of facial expression and emotion through still image. This method has three main steps to recognize the facial emotion: (1) Detection of facial areas with skin-color method and feature maps, (2) Creation of the Bezier curve on eyemap and mouthmap, and (3) Classification and distinguish the emotion of characteristic with Hausdorff distance. To estimate the performance of the implemented system, we evaluate a success-ratio with emotional face image database, which is commonly used in the field of facial analysis. The experimental result shows average 76.1% of success to classify and distinguish the facial expression and emotion.

  • PDF

Frontal Face Generation Algorithm from Multi-view Images Based on Generative Adversarial Network

  • Heo, Young- Jin;Kim, Byung-Gyu;Roy, Partha Pratim
    • Journal of Multimedia Information System
    • /
    • 제8권2호
    • /
    • pp.85-92
    • /
    • 2021
  • In a face, there is much information of person's identity. Because of this property, various tasks such as expression recognition, identity recognition and deepfake have been actively conducted. Most of them use the exact frontal view of the given face. However, various directions of the face can be observed rather than the exact frontal image in real situation. The profile (side view) lacks information when comparing with the frontal view image. Therefore, if we can generate the frontal face from other directions, we can obtain more information on the given face. In this paper, we propose a combined style model based the conditional generative adversarial network (cGAN) for generating the frontal face from multi-view images that consist of characteristics that not only includes the style around the face (hair and beard) but also detailed areas (eye, nose, and mouth).