• Title/Summary/Keyword: Face Velocity

Search Result 207, Processing Time 0.027 seconds

A Study on Setting Smoke Exhaust Rate According to the Transverse Ventilation with Oversized Exhaust Ports in Road Tunnel by the Variation of Fire Intensity (화재강도변화에 따른 횡류식 대배기구 배연량 설정에 관한 연구)

  • Rie, Dong-Ho;Kim, Ha-Young
    • Fire Science and Engineering
    • /
    • v.22 no.2
    • /
    • pp.38-43
    • /
    • 2008
  • Recently, the application of transverse ventilation system in accordance with oversized exhaust ports has been increased in bidirectional road tunnel in order to improving smoke exhaust ability. In this study, numerical simulations were carried out by using FDS (ver. 4.0) which includes variations of exhaust flow rates and heat release rate of fire to obtain the optimal smoke exhaust rate in case of fire in the transversely ventilation system. As a result, smoke exhaust amount tends to increase when the inner velocity is existing in the tunnel. In case of internal longitudinal air velocity 2.5m/s face to the fire, smoke moving distance should be restricted within 250m when the smoke exhaust rate which exceeds $244.8m^3/s$.

A Numerical Study on R410A Charge Amount in an Air Cooled Mini-Channel Condenser (공랭식 미소유로 응축기의 R410A 충전량 예측에 관한 수치적 연구)

  • Park, Chang-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.710-718
    • /
    • 2010
  • A numerical study was performed to predict refrigerant charge amount in a mini-channel condenser for a R410A residential air-conditioning system. Multi-channel flat tubes with 12 mini-channels of 1.17 mm average hydraulic diameter for each tube were applied to the condenser. The condenser consisted of 3 passes, and the first, second, and third pass had 44, 19, and 11 tubes, respectively. Each pass was connected by a vertical header. In this study, the condenser was divided into 410 finite volumes, and analyzed by an $\varepsilon$-NTU method. With thermophysical properties and void fraction models for each volume element, the R410A amount distribution and a total charge amount in the condenser were calculated. The predicted total charge amount was compared with the experimentally measured charge amount under a standard ARI A condition. The developed model could predict the charge amount in the mini-channel condenser within prediction errors from -23.9% to -3.0%. Air velocity distribution at the condenser face was considered as non-uniform and uniform by the simulation model, and its results showed that the air velocity distribution could significantly influence the charge amount and vapor phase distribution in the condenser.

A Study on the Factors Affecting the Performance of Paper Heat Exchanger for Exhaust Heat Recovery (배기열 회수용 종이 열교환기의 성능에 영향을 미치는 인자에 관한 연구)

  • Chung Min-Ho;Yoo Seong-Yeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.10
    • /
    • pp.956-964
    • /
    • 2005
  • In order to control indoor air quality and save energy, it is needed to install a suitable ventilation system equipped with heat exchanger for heat recovery The purpose of this research is to find the factors affecting the performance of paper heat exchanger for exhaust heat recovery, which can be applied directly to the conventional ventilation unit, air-purifier, and air-conditioning system. In this study, thermal performance and pressure loss of the paper heat exchanger are measured and compared at various operating conditions. The effectiveness of sensible, latent and total heat at the face velocity of 0.75 m/s are $77\%,\;47\%\;and\;57\%$ in the cooling condition and $77\%,\;59\%,\;and\;\%$ in the heating condition, respectively. The effectiveness for sensible heat is only affected by velocity. On the other hand, the effectiveness for latent heat is affected. by temperature and relative humidity.

Rock Mass Stability of the Buddha Statue on a Rock Cliff using Fracture Characteristics and Geological Face-Mapping (마애불 암반의 단열특성과 지질맵핑을 이용한 안정성 해석)

  • Ihm, Myeong Hyeok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.539-544
    • /
    • 2023
  • The subject of this study is the Maae Buddha statue in granodiorite of the Mesozoic Cretaceous period, which is concerned about stability as a standing stone cultural property located in ◯◯-dong, Gyeongsangbuk-do. For stability analysis, three-dimensional face mapping, geological properties of joints, three-dimensional scanning, ultrasonic velocity, polarization microscopy, electron microscopy analysis and XRD analysis were performed. In addition, the safety factor of the Maaebul was calculated by analyzing the damage status investigation, stereographic projection analysis, rock classification, and limit equilibrium analysis. The types and scales of damage and possible collapse by section depend on the degree of weathering of the rock and the orientation and characteristics of the joints, but wedge-failure and toppling-failure are expected to be small-scale. The safety factor of Maaebul in dry and wet conditions is less than 1.2, so stability is concerned. The types of damage were mainly observed, such as exfoliation, cracking, granular decomposition, and vegetation growth. The Maaebul rock is granodiorite, and the surface discoloration materials are K, Fe, and Mg. The 4 sets of joints are developed, J1 is tensile joint and the others are shear joint. The uniaxial compressive strength estimated by ultrasonic exploration is 514kgf/cm2, which corresponds to most soft rocks and some weathered rocks. Rock classification(RMR) is estimated to be grade 5, very poor rock mass. These technique along with the existing methods of safety diagnosis of cultural properties are expected to be a reasonable tool for objective interpretation and stability review of stone cultural properties.

Applicability of CADMAS-SURF Code for the Variation of Water Level and Velocity due to Bores (CADMAS-SURF에 의한 단파의 수위 및 유속변화에 대한 예측정도의 검토)

  • Lee, Kwang-Ho;Kim, Chang-Hoon;Hwang, Yong-Tae;Kim, Do-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.52-60
    • /
    • 2008
  • This study investigates the applicability of CADMAS-SURF (Super Roller Flume for Computer Aided Design of a MArtime Structure) code basal on the Navier-Stokes solver to predict bore phenomena. The time variation of ware levels and velocities due to the bore propagation were computed for the different bore strength conditions. In order to verify the numerical results by CADMAS-SURF, laboratory experiments were also performed, using the DPIV and LDV measuring system. The numerical results were compared to the experimental data and the analytical predictions by the NSC method basal on fully nonlinear shallow-water theory by the method of characteristics. It appears that the CADMAS-SURF slightly overestimated the water-surface level measured by the laboratory experiments and its discrepancy becomes prominent as the bore strength increases. The predicted propagation speed for a bore was also slaver than that by the experiment and NSC method. However, the temporal variations in velocities were in relatively good agreement with the experimental data for all cases, except for overshooting and undershooting in the front face of a bore, which may be derived from the numerical instability. Further, CADMAS-SURF successfully simulated the decrease in the water level and velocity caused by the effects of negative waves reflected from the upstream end wall.

Tribology for All-Ceramic Joint Prostheses

  • Ikeuchi, K.;Kusaka, J.;Yoshida, H.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.165-177
    • /
    • 2000
  • Ceramic on ceramic total hip prostheses are developed to apply to young patients because lifetime of polyethylene joint prostheses is limited by loosening due to biological response. As mating faces of all-ceramic joint must be highly conformed to reduce stress concentration, wear properties of flat surfaces are investigated in this study. Through wear tests at 2 MPa of contact pressure and 36 mm/s of sliding velocity, alumina and silicon carbide keep low wear rate, high hardness and smooth surface. Soft surface film was detected after the test in bovine serum. This suggests that boundary lubrication is effective to reduce wear in all-ceramic joint.

  • PDF

A Study on the High Temperature Filtration Performance Test of Low Density Ceramic Filters (저밀도 세라믹 필터의 고온 여과 성능시험에 관한 연구)

  • 이동섭;홍민선;최종인
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.1
    • /
    • pp.75-84
    • /
    • 2001
  • Hot gas filtration method via using ceramic filters is an evolving technology applicable to numerous industrial and air pollution control processes. Alumino silicate, organic and inorganic binders were the major raw materials in manufacturing ceramic filters. In this work, disc type ceramic filters(50$\phi$$\times$10t) were manufactured by vacuum forming processes using ceramic raw materials. The porosity and bulk density of disc type ceramic filers ranged from 86 to 89% and from 0.27 to 0.36 g/㎤, respectively. In this work disc type ceramic medium were tested utilizing coupon experimental apparatus. Disc type filters showed high collection efficiencies over 99.96% with Darchs law coefficients of 4.1$\times$10(sup)10~9.63$\times$10(sup)10/$m^2$ depending on mean pore sizes. In addition, filtration and detachment of ceramic filters turned out to be performed effectively using 10 cm/sec face velocity, 5 minutes filtration cycle, 100msec pulse jet valve opening time and 3 bar pulsing pressure.

  • PDF

3-D Facial Motion Estimation using Extended Kalman Filter (확장 칼만 필터를 이용한 얼굴의 3차원 움직임량 추정)

  • 한승철;박강령김재희
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.883-886
    • /
    • 1998
  • In order to detect the user's gaze position on a monitor by computer vision, the accurate estimations of 3D positions and 3D motion of facial features are required. In this paper, we apply a EKF(Extended Kalman Filter) to estimate 3D motion estimates and assumes that its motion is "smooth" in the sense of being represented as constant velocity translational and rotational model. Rotational motion is defined about the orgin of an face-centered coordinate system, while translational motion is defined about that of a camera centered coordinate system. For the experiments, we use the 3D facial motion data generated by computer simulation. Experiment results show that the simulation data andthe estimation results of EKF are similar.e similar.

  • PDF

Performance Evaluation of Gas Cleaning Industrial Filters using a Bi-Modal Test Aerosol for Dust Loading Studies

  • Lee, Jae-Keun;Kim, Seong-Chan;Benjamin Y.H. Liu
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.131-137
    • /
    • 1996
  • Typical size distribution of emission particulates is bi-modal in shape with particles in the fine mode (< 2.0 $\mu\textrm{m}$) and the coarse mode. An experimental study of pressure drop across the industrial gas cleaning filters has been conducted using particle mixture of fine alumina and coarse Arizona dusts with a rotating aerosol disperser to generate the bi-modal test aerosol. Pressure drop increased linearly with increasing mass loading. The pressure drop was found to be strongly dependent upon the mass ratio of fine to coarse particles. The smaller the mass ratio of fine to coarse particles and the higher face velocity are, the faster pressure drop rises. The fine particles and the greater inertia of the particle moving fast would cause a denser cake formation on the filter surface, resulting in a greater specific resistance to the gas flow.

  • PDF

Lubrication Characteristics of Laser Textured Parallel Thrust Bearing : Part 2 - Effect of Dimple Location (Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제2보 - 딤플 위치의 영향)

  • Park, Tae-Jo;Hwang, Yun-Geon
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • In the last decade, laser surface texturing (LST) has emerged as a viable option of surface engineering. Many problems related with mechanical components such as thrust bearings, mechanical face seals and piston rings, etc, LST result in significant improvement in load capacity, wear resistance and reduction in friction force. It is mainly experimentally reported the micro-dimpled bearing surfaces can reduce friction force, however, precise theoretical results are not presented until now. In this paper, a commercial computational fluid dynamics(CFD) code, FLUENT is used to investigate the lubrication characteristics of a parallel thrust bearing having 3-dimensional micro-dimple. The results show that the pressure, velocity and density distributions are highly affected by the location and number of dimple. The numerical method and results can be use in design of optimum dimple characteristics, and further researches are required.