• 제목/요약/키워드: Face Detecting

검색결과 196건 처리시간 0.037초

감성ICT 교육을 위한 얼굴감성 인식 시스템에 관한 연구 (A Study on the System of Facial Expression Recognition for Emotional Information and Communication Technology Teaching)

  • 송은지
    • 한국실천공학교육학회논문지
    • /
    • 제4권2호
    • /
    • pp.171-175
    • /
    • 2012
  • 최근 정보기술을 이용하여 인간의 감정을 인식하고 소통할 수 있는 ICT(Information and Communication Technology)의 연구가 증가하고 있다. 예를 들어 상대방의 마음을 읽기 위해서 그 사람과의 관계를 형성하고 활동을 해야만 하는 시대에서 사회의 디지털화로 그 경험이 디지털화 되어가며 마인드를 리딩 할 수 있는 디지털기기들이 출현하고 있다. 즉, 인간만이 예측할 수 있었던 감정을 디지털 기기가 대신해 줄 수 있게 된 것이다. 얼굴에서의 감정인식은 현재 연구되어지는 여러 가지 감정인식 중에서 효율적이고 자연스러운 휴먼 인터페이스로 기대되고 있다. 본 논문에서는 감성 ICT에 대한 고찰을 하고 그 사례로서 얼굴감정 인식 시스템에 대한 메카니즘을 살펴보고자 한다.

  • PDF

경추 부위 동태손상증후군의 진단·평가를 위한 설문 문항 개발 (Development of Diagnostic and Assessable Questionnaires for Cervical Movement System Impairment Syndromes)

  • 박문석;김현호;박영배;박영재
    • 대한한의진단학회지
    • /
    • 제20권1호
    • /
    • pp.1-13
    • /
    • 2016
  • Objectives The aim of this study is to develop diagnostic and assessable questionnaires for cervical movement system impairment syndromes. Methods We reviewed the previous study and literature, and organized various checkable items for differential diagnosis of four different cervical movement system impairment syndromes. Next, we selected items which can be developed as questionnaire items. Finally, we conducted a face validity study with twelve Korean medical doctors and carried out survey research to evaluate the importance score of the items with three experts. Results We developed a diagnostic and assessable questionnaire as follows: 9 items for cervical extension syndrome; 5 items for cervical flexion syndrome; 9 items for cervical rotation syndrome. By conducting 2 rounds of survey research, we were able to bridge the differences in the importance score of each item. Conclusions A questionnaire for the diagnosis and assessment of movement system impairment syndromes was developed. This questionnaire holds promising applications for objective diagnosis and assessment of cervical movement system impairment syndromes. This tool may also be used for detecting the sub-health status of musculoskeletal systems.

졸음운전 방지를 위한 하품 인식 알고리즘 (Yawn Recognition Algorism for Prevention of Drowsy Driving)

  • 윤원종;이재성
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.447-450
    • /
    • 2013
  • 본 논문에서는 카메라로부터 운전자의 눈동자, 하품을 인식하여 운전자의 졸음운전을 방지하는 방법을 제안한다. Viola-Jones 알고리즘을 사용하여 얼굴의 영역을 확보하고 이로부터 눈 영역과 입 영역을 추출해낸다. 눈 영역에서는 Hough변환을 적용하여 눈동자를 인식하여 졸음을 인식한다. 입 영역에는 전처리 필터를 적용하여 하품할 때 혀의 피부색을 검출한 뒤에 Sub-Window를 사용하여 하품 여부를 판단한다. 실험 결과 하품 인식률은 87%에 달했다. 본 논문에서 제안된 방법을 사용함으로서 졸음운전에 대한 사고를 줄이는 데 기여할 수 있을 것으로 보인다.

  • PDF

자율 주차 시스템을 위한 실시간 차량 추출 알고리즘 (A Real-time Vehicle Localization Algorithm for Autonomous Parking System)

  • 한종우;최영규
    • 반도체디스플레이기술학회지
    • /
    • 제10권2호
    • /
    • pp.31-38
    • /
    • 2011
  • This paper introduces a video based traffic monitoring system for detecting vehicles and obstacles on the road. To segment moving objects from image sequence, we adopt the background subtraction algorithm based on the local binary patterns (LBP). Recently, LBP based texture analysis techniques are becoming popular tools for various machine vision applications such as face recognition, object classification and so on. In this paper, we adopt an extension of LBP, called the Diagonal LBP (DLBP), to handle the background subtraction problem arise in vision-based autonomous parking systems. It reduces the code length of LBP by half and improves the computation complexity drastically. An edge based shadow removal and blob merging procedure are also applied to the foreground blobs, and a pose estimation technique is utilized for calculating the position and heading angle of the moving object precisely. Experimental results revealed that our system works well for real-time vehicle localization and tracking applications.

A New Rectification Scheme for Uncalibrated Stereo Image Pairs and Its Application to Intermediate View Reconstruction

  • Ko, Jung-Hwan;Jung, Yong-Woo;Kim, Eun-Soo
    • Journal of Information Display
    • /
    • 제6권4호
    • /
    • pp.26-34
    • /
    • 2005
  • In this paper, a new rectification scheme to transform the uncalibrated stereo image pair into the calibrated one is suggested and its performance is analyzed by applying this scheme to the reconstruction of the intermediate views for multi-view stereoscopic display. In the proposed method, feature points are extracted from the stereo image pair by detecting the comers and similarities between each pixel of the stereo image pair. These detected feature points, are then used to extract moving vectors between the stereo image pair and the epipolar line. Finally, the input stereo image pair is rectified by matching the extracted epipolar line between the stereo image pair in the horizontal direction. Based on some experiments done on the synthesis of the intermediate views by using the calibrated stereo image pairs through the proposed rectification algorithm and the uncalibrated ones for three kinds of stereo image pairs; 'Man', 'Face' and 'Car', it is found that PSNRs of the intermediate views reconstructed from the calibrated images improved by about 2.5${\sim}$3.26 dB than those of the uncalibrated ones.

깊이정보 기반 Watershed 알고리즘을 이용한 얼굴영역 분할 (Facial Region Segmentation using Watershed Algorithm based on Depth Information)

  • 김장원
    • 한국정보전자통신기술학회논문지
    • /
    • 제4권4호
    • /
    • pp.225-230
    • /
    • 2011
  • 본 논문에서는 깊이정보에 기반한 watershed와 영역병합 알고리즘을 이용한 얼굴영역 분할 방법을 제안하였다. 얼굴영역 검출은 영역 분할 단계, 초기 화소 영역 검출 단계, 영역 병합의 세 단계로 구성된다. 입력된 컬러 영상은 제안된 알고리즘에 의해 균일한 작은 영역들로 분할된다. 색도정보와 에지 구속 조건을 사용하여 균일한 영역들을 결합함으로써 얼굴영역을 검출한다. 제안한 알고리즘은 색도정보나 에지정보만을 사용하는 기존 방법에서의 문제점을 해결하였다. 제안한 알고리즘의 성능을 평가하기 위해 컴퓨터 시뮬레이션을 하였으며 정확한 얼굴 영역을 분할할 수 있었다.

신경회로망을 이용한 비정상적인 패킷탐지 (Detecting anomaly packet based on neural network)

  • 이장헌;김성옥
    • 정보보호학회논문지
    • /
    • 제11권5호
    • /
    • pp.105-117
    • /
    • 2001
  • 21세기 정보화시대를 맞이하여 네트워크는 전산화의 기본적인 시설로 인식되고 있으나, 이러한 네트워크체계는 정보의 공유라는 본래의 취지에서 벗어나 자료의 불법 유출과 자료파괴의 도구로 사용될 수 있는 양면성을 지니고 있다. 최근에는 초보자들도 인터넷상에서 취약점 검색툴이나 여러 가지 해킹툴을 쉽게 구하고 사용할 수 있어 그 위협은 증대되고 있으며, 공격방법 또한 다양화 및 지능화되고 있는 추세이다. 본 논문에서는 네트워크 공격을 위한 비정상적인 패킷을 탐지하는데 목적을 두고 있다. 이를 위해 네트워크 패킷을 수집하고 각 패킷의 확률특성을 이용하여 비정상적인 정도를 나타내주는 감사자료를 생성한 후 이를 신경회로망을 이용하여 침입여부를 판단한다.

Classification of Livestock Diseases Using GLCM and Artificial Neural Networks

  • Choi, Dong-Oun;Huan, Meng;Kang, Yun-Jeong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권4호
    • /
    • pp.173-180
    • /
    • 2022
  • In the naked eye observation, the health of livestock can be controlled by the range of activity, temperature, pulse, cough, snot, eye excrement, ears and feces. In order to confirm the health of livestock, this paper uses calf face image data to classify the health status by image shape, color and texture. A series of images that have been processed in advance and can judge the health status of calves were used in the study, including 177 images of normal calves and 130 images of abnormal calves. We used GLCM calculation and Convolutional Neural Networks to extract 6 texture attributes of GLCM from the dataset containing the health status of calves by detecting the image of calves and learning the composite image of Convolutional Neural Networks. In the research, the classification ability of GLCM-CNN shows a classification rate of 91.3%, and the subsequent research will be further applied to the texture attributes of GLCM. It is hoped that this study can help us master the health status of livestock that cannot be observed by the naked eye.

Development of a structural inspection system with marking damage information at onsite based on an augmented reality technique

  • Junyeon Chung;Kiyoung Kim;Hoon Sohn
    • Smart Structures and Systems
    • /
    • 제31권6호
    • /
    • pp.573-583
    • /
    • 2023
  • Although unmanned aerial vehicles have been used to overcome the limited accessibility of human-based visual inspection, unresolved issues still remain. Onsite inspectors face difficulty finding previously detected damage locations and tracking their status onsite. For example, an inspector still marks the damage location on a target structure with chalk or drawings while comparing the current status of existing damages to their previous status, as documented onsite. In this study, an augmented-reality-based structural inspection system with onsite damage information marking was developed to enhance the convenience of inspectors. The developed system detects structural damage, creates a holographic marker with damage information on the actual physical damage, and displays the marker onsite via an augmented reality headset. Because inspectors can view a marker with damage information in real time on the display, they can easily identify where the previous damage has occurred and whether the size of the damage is increasing. The performance of the developed system was validated through a field test, demonstrating that the system can enhance convenience by accelerating the inspector's essential tasks such as detecting damages, measuring their size, manually recording their information, and locating previous damages.

감정 인식을 위해 CNN을 사용한 최적화된 패치 특징 추출 (Optimized patch feature extraction using CNN for emotion recognition)

  • 하이더 이르판;김애라;이귀상;김수형
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.510-512
    • /
    • 2023
  • In order to enhance a model's capability for detecting facial expressions, this research suggests a pipeline that makes use of the GradCAM component. The patching module and the pseudo-labeling module make up the pipeline. The patching component takes the original face image and divides it into four equal parts. These parts are then each input into a 2Dconvolutional layer to produce a feature vector. Each picture segment is assigned a weight token using GradCAM in the pseudo-labeling module, and this token is then merged with the feature vector using principal component analysis. A convolutional neural network based on transfer learning technique is then utilized to extract the deep features. This technique applied on a public dataset MMI and achieved a validation accuracy of 96.06% which is showing the effectiveness of our method.