• Title/Summary/Keyword: Fabrication Management

Search Result 216, Processing Time 0.029 seconds

A Scheduling Model for FMS (유연생산시스템의 일정계획에 관한 연구)

  • Lee, Dong-Chun;Sin, Hyeon-Jae
    • Journal of Korean Society for Quality Management
    • /
    • v.20 no.1
    • /
    • pp.136-146
    • /
    • 1992
  • Most of scheduling papers on FMS have been considered that the fabrication process, the machining process and the assembly process etc. are independent and the releasing, routing, dependent, batching, loading problem are treated separetely. In this paper, we discuss that the integrated scheduling problem which can be solved for efficient use. We combine two systems that each process system which in order to produce a product is treated dependently, the releasing and the routing problem are combined one system and we present the efficient flexible manufacturing system as including the alternate process.

  • PDF

A Study on Layout Design and Simulation of The Steel Fabrication (제관물 제작 공장의 레이아웃 설계 및 시뮬레이션에 관한 연구)

  • 하승진;권봉재;류상훈;김종철
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.167-170
    • /
    • 2000
  • 본 연구에서는 먼저, 신규 투자 공장에서 생산되는 제품의 공정 특징을 만족할 수 있는 레이 아웃을 설계하였으며, 시뮬레이션을 이용하여 설계된 레이아웃에서 제품 타입별로 요구되는 생산 물량을 처리할 수 있는가를 평가하였다. 이를 위해 여러 대안의 제시 및 시뮬레이션 평가를 수행하였다. 본 연구의 결과 경제성을 고려한 신규 공장의 적절한 레이아웃 설계 및 운영 방안을 제시하였다.

  • PDF

Direct Fabrication of a-Si:H TFT Arrays on Flexible Substrates;Principal Manufacturing Challenges and Solutions

  • O’Rourke, Shawn M.;Loy, Douglas E.;Moyer, Curt;Ageno, Scott K.;O’Brien, Barry P.;Bottesch, Dirk;Marrs, Michael;Dailey, Jeff;Bawolek, Edward J.;Trujillo, Jovan;Kaminski, Jann;Allee, David R.;Venugopal, Sameer M.;Cordova, Rita;Colaneri, Nick;Raupp, Gregory B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.251-254
    • /
    • 2007
  • Principal challenges to $\underline{direct\;fabrication}$ of high performance a-Si:H transistor arrays on flexible substrates include automated handling through bonding-debonding processes, substrate-compatible low temperature fabrication processes, management of dimensional instability of plastic substrates, and planarization and management of CTE mismatch for stainless steel foils. Viable solutions to address these challenges are described.

  • PDF

3D Printing in Modular Construction: Opportunities and Challenges

  • Li, Mingkai;Li, Dezhi;Zhang, Jiansong;Cheng, Jack C.P.;Gan, Vincent J.L.
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.75-84
    • /
    • 2020
  • Modular construction is a construction method whereby prefabricated volumetric units are produced in a factory and are installed on site to form a building block. The construction productivity can be substantially improved by the manufacturing and assembly of standardized modular units. 3D printing is a computer-controlled fabrication method first adopted in the manufacturing industry and was utilized for the automated construction of small-scale houses in recent years. Implementing 3D printing in the fabrication of modular units brings huge benefits to modular construction, including increased customization, lower material waste, and reduced labor work. Such implementation also benefits the large-scale and wider adoption of 3D printing in engineering practice. However, a critical issue for 3D printed modules is the loading capacity, particularly in response to horizontal forces like wind load, which requires a deeper understanding of the building structure behavior and the design of load-bearing modules. Therefore, this paper presents the state-of-the-art literature concerning recent achievement in 3D printing for buildings, followed by discussion on the opportunities and challenges for examining 3D printing in modular construction. Promising 3D printing techniques are critically reviewed and discussed with regard to their advantages and limitations in construction. The appropriate structural form needs to be determined at the design stage, taking into consideration the overall building structural behavior, site environmental conditions (e.g., wind), and load-carrying capacity of the 3D printed modules. Detailed finite element modelling of the entire modular buildings needs to be conducted to verify the structural performance, considering the code-stipulated lateral drift, strength criteria, and other design requirements. Moreover, integration of building information modelling (BIM) method is beneficial for generating the material and geometric details of the 3D printed modules, which can then be utilized for the fabrication.

  • PDF

A Draft of Hull Piece Fabrication Line for Small and Medium Sized Shipyards by Object Oriented Analysis (객체지향분석에 의한 중소형 조선소 선체외판 생산설비 계획에 관한 연구)

  • 박명규;문귀호;김원돈
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.1
    • /
    • pp.29-43
    • /
    • 1999
  • The production process of the compound-curved hull plates includes hull design, definition, fairing, modeling, lofting, cutting, and forming in sequence. Traditional fabrication methods and shop environment caused low level to productivity in medium and small sized shipyards. The most effective solution to solve those problems is to rationalize the layout of facilities. For the well-balanced development of domestic shipbuilding industry, it is urgently required to reduce the gap between modernized large sized shipyards and traditional small and medium sized shipyards in production technologies and efficiencies. For the efficient and accurate hull piece forming, all information from design to forming should be clarified and organized in a systematic manner. Thus, management of the information plays an important role in the computerized and automated of hull piece forming. The object of this paper is to survey the status of the field, to find out the feasibility and to introduce a draft of hull piece fabrication line for small and medium sized shipyards. The development of required system follows the object oriented technology to extend to simulation based system for carrying out physical product flow and facilities layout analysis. It is feasible to operate such a modernized facility for a group of small and medium shipyards who are unable to have each of their own facility because of its large amount of initial investment and insufficient work load.

  • PDF

A Study on Organic/Inorganic Materials Deposition Using SAW-ED System (SAW-ED 시스템을 이용한 유/무기 소재 증착에 관한 연구)

  • Kim, Hyun Bum;Kim, Kyung Hwan;Ghayas, Siddiqi;Lim, Jong Hwan;Yang, Hyoung Chan;Choi, Kyung Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.100-108
    • /
    • 2016
  • In various industries, many researches studies have been done in using nano thin film fabrication technology. In the field of printed electronics, various electronic devices can be fabricated using a direct printing process of on multiple functional materials. It has the advantages of low prices, environment-friendly environmentally friendly, flexibleility, large scale, mass production produced, simple process and so on. In this study, a viable thin film fabrication technology has beenwas introduced using the surface acoustic wave mechanism for thin film deposition. Fabrication of thin films using organic, inorganic and composite of organic/inorganic materials have been were analyzed through the experimental research. In this experiment, organic material MEH:PPV, inorganic material ZnO and composite material MEH:PPV/ZnO have been depo sited as thin films.

Fault Detection, Diagnosis, and Optimization of Wafer Manufacturing Processes utilizing Knowledge Creation

  • Bae Hyeon;Kim Sung-Shin;Woo Kwang-Bang;May Gary S.;Lee Duk-Kwon
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.372-381
    • /
    • 2006
  • The purpose of this study was to develop a process management system to manage ingot fabrication and improve ingot quality. The ingot is the first manufactured material of wafers. Trace parameters were collected on-line but measurement parameters were measured by sampling inspection. The quality parameters were applied to evaluate the quality. Therefore, preprocessing was necessary to extract useful information from the quality data. First, statistical methods were used for data generation. Then, modeling was performed, using the generated data, to improve the performance of the models. The function of the models is to predict the quality corresponding to control parameters. Secondly, rule extraction was performed to find the relation between the production quality and control conditions. The extracted rules can give important information concerning how to handle the process correctly. The dynamic polynomial neural network (DPNN) and decision tree were applied for data modeling and rule extraction, respectively, from the ingot fabrication data.

A Scheduling Problem to Minimize Total Tardiness in the Two-stage Assembly-type Flowshop (총 납기지연시간 최소화를 위한 두 단계 조립시스템에서의 일정계획에 관한 연구)

  • Ha, Gui-Ryong;Lee, Ik-Sun;Yoon, Sang-Hum
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.3
    • /
    • pp.1-16
    • /
    • 2008
  • This paper considers a scheduling problem to minimize the total tardiness in the two-stage assembly-type flowshop. The system is composed of multiple fabrication machines in the first stage and a final-assembly machine in the second stage. Each job consists of multiple tasks, each task is performed on the fabrication machine specified in advance. After all the tasks of a job are finished, the assembly task can be started on the final-assembly machine. The completion time of a job is the time that the assembly task for the job is completed. The objective of this paper is to find the optimal schedule minimizing the total tardiness of a group of jobs. In the problem analysis, we first derive three solution properties to determine the sequence between two consecutive jobs. Moreover, two lower objective bounds are derived and tested along with the derived properties within a branch-and-bound scheme. Two efficient heuristic algorithms are also developed. The overall performances of the proposed properties, branch-and-bound and heuristic algorithms are evaluated through numerical experiments.

Development of a 3D Printing Open-market System for Copyright Protection and Remote 3D Printing (3D프린터용 설계데이터의 저작권보호와 원격출력을 지원하는 오픈 마켓 시스템 개발)

  • Kim, Sung Gyun;Yoo, Woosik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.3
    • /
    • pp.253-258
    • /
    • 2015
  • The 3D printing is any of various processes for making a three dimensional object of almost any shape from a 3D model. Recently, a rapidly expanding hobbyist and home-use market has become established with the inauguration of the open-source RepRap and Fab@Home projects. However, this causes problems regarding copyright protection and usage of illegal 3D data. In this paper, we developed a 3D printing open-market system, which guarantees copyright protection using the remote 3D printing without direct distribution of 3D design data. Because most of the home-use 3D printers are FFF (Fused Filament Fabrication) based on NC code system, open-market system uses FFF 3D printers. Also, open-market system inspects the uploaded 3D model data, so the system can prevent distribution of illegal model data such as weapons, etc.

A Send-ahead Policy for a Semiconductor Wafer Fabrication Process

  • Moon, Ilkyeong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.18 no.1
    • /
    • pp.119-126
    • /
    • 1993
  • We study a manufacturing process that is quite common in semiconductor wafer fabrication of semiconductor chip production. A machine is used to process a job consisting of J wafers. Each job requires a setup, and the i$_{th}$ setup for a job is sucessful with probability P$_{i}$. The setup is prone to failure, which results in the loss of expensive wafers. Therefore, a tiral run is first conducted on a small batch. If the set up is successful, the test is passed and the balance of the job can be processed. If the setup is unsuccessful, the exposed wafers are lost to scrap and the mask is realigned. The process then repeats on the balance of the job. We call this as send-ahead policy and consider general policies in which the number of wafers that are sent shead depend on the cost of the raw wafer, the sequence of success probabilities, and the balance of the job. We model this process and determine the expected number of good wafers per job,the expected time to process a job, and the long run average throughput. An algorithm to minimize the cost per good wafer subject to a demand constraint is provided.d.d.

  • PDF