• Title/Summary/Keyword: Fabric Properties

Search Result 1,183, Processing Time 0.024 seconds

Effects of U.V. Irradiation on the Physical Properties of Fabrics Treated with Eco-friendly Persimmon Juice -Silk and Nylon Fabrics- (친환경 감물가공 소재의 자외선 조사에 의한 물리적 특성변화에 대한 연구 -견 및 나일론 직물-)

  • Kim, Jimin;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.19 no.4
    • /
    • pp.120-134
    • /
    • 2015
  • This study aimed to determine the physical properties of silk and nylon fabrics that are treated with persimmon juice in accordance with irradiation time of ultraviolet spectrum. Persimmon juice dyeing has the advantage of using the tannin component of the persimmon. Tannin plays an important role in inhibiting photodegradation of fibers or polymers. Among fibrous materials, silk and nylon are prone to deterioration by light. Hence, this study aimed to reduce these weaknesses of silk and nylon by applying persimmon juice treatment. We accordingly carried out investigation and experiments on ultraviolet irradiation, and physical characteristics of treated fabrics. The persimmon juice treatment process led to increased weight and thickness. In addition, the air permeability of silk fabric was increased, as compared to the control specimen; whereas, that of nylon fabric was decreased. Both drape stiffness and flex stiffness of silk and nylon tended to be high in textiles processed with persimmon juice treatment, as compared to the control textile. Peak load and elongation at peak load of untreated samples clearly decreased in both silk and nylon fabrics with the increase of ultraviolet irradiation time, while those of persimmon juice treated samples increased. Furthermore, ultraviolet blocking ratio measurement indicated that the fabric specimens treated with persimmon juice blocked U.V. spectrum better than the control specimen.

Effect of Pretreatment on Dyeability and Functionalities of Summer Rayon fabrics Finished by Gallnut Extract (전처리가 오배자 추출물에 의한 여름용 인견직물의 염색 및 기능성 향상에 미치는 영향)

  • Hwang, Hyun Ju;Hong, Kyung Hwa
    • Fashion & Textile Research Journal
    • /
    • v.18 no.2
    • /
    • pp.244-251
    • /
    • 2016
  • Viscose rayon filament fabrics have been called 'artificial silk' and beloved as summer clothing materials for a long time in Korea. This is because the viscose rayon filament fabrics reveals glossy surface and cool touch feeling compared to other conventional fabrics composed of staple fibers. Therefore, we tried to prepare the higher value added viscose rayon filament fabrics for summer textile products. In this study, we applied gallnut extract to the viscose rayon filament fabric to develop summer fabrics with natural color and multi-functions such as antibacterial and antioxidant properties. This process also pursue eco-friendly and multi-functional fabric finishing from the natural material "gallnut". In addition, various pre-treatment with cationizer, chitosan, or chito-oligomer was applied to the finishing process to improve the finishing efficacy and durability. Consequently, it was found that the active component of gallnut extract was successfully incorporated to the viscose rayon filament fabric through a pad-dry-cure process. And, the treated viscose rayon filament fabrics showed excellent antibacterial and antioxidant properties. Therefore, it was expected that the rayon filament fabrics treated by gallnut extract could be used as effective summer fabrics preventing the growth of bacteria and skin ageing as well as providing cool touch feeling. However, the pre-treatments were not that meaningful on the functionalities but effective on coloring.

Dyeability and Functionality of Bamboo Extracts (Part I) -Characteristics of Bamboo Extracts and Dyeing Properties of Cotton- (대나무 추출물의 염색성과 기능성 (제1보) -대나무 추출물의 특성과 면직물에 대한 염색성-)

  • Jung, Go-Eun;Lee, Jung-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.2
    • /
    • pp.206-217
    • /
    • 2011
  • The dyeing properties of cotton fabrics with bamboo colorants were studied by investigating the analysis of bamboo colorants, the effect of dyeing conditions (dye concentrations, dyeing temperatures and times on dye uptakes), effect of mordants, and color change. The various colorfastness of dyed fabrics were evaluated for practical use; in addition, the antimicrobial ability, ultraviolet-cut ability, and deodorant ability were also estimated. In the UV-Visible spectrum, the wavelength of the maximum absorption for bamboo stems and leaves extracts was found to be 280nm and 295nm, respectively; in addition, bamboo colorants produced a yellow color. From the FT-IR and GC-MS results, it was assumed that the chromophoric substance from bamboo extracts was composed of flavones substances with tricin. An increased dyeing concentration resulted in a larger dye uptake and a Freundlich absorption isotherm was obtained. A larger dye uptake occurred as the dyeing time and temperature increased. The post-mordanting was more effective than pre-mordanting. Mordants, Fe and N.Fe, were effective for an increased dye uptake. The color of fabrics mordanted with Cu and N.Cu changed to GY. Regardless of mordanting, the colorfastness on the washing of dyed fabrics showed a low rating compared to other fastness. Mordanting adversely affected the lightfastness of dyed fabric. The dyed fabric showed very good antimicrobial abilities of 99.9%. In addition, the ultraviolet-cut ability and deodorant ability improved in cotton fabric dyed with bamboo extracts.

Electrochemical Properties of Core-Shell Polyolefin Nonwoven Fabric Modified with Sulfonic Acid Group (술폰산기를 갖은 코아-쉘형 폴리올레핀 부직포의 전기화학적 성질)

  • Choi, Seong-Ho;Zhang, Yu-Ping;Shon, Sang-Ho;Lee, Kwang-Pill
    • Analytical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.60-68
    • /
    • 2004
  • The core-shell polyolefin nonwovon fabric (PNF), wherein the PNF comprises at least about 60% of polyethylene having a melting temperature at ${\sim}132^{\circ}C$ and no more than about 40% of second polypropylene having a lower melting temperature at ${\sim}162^{\circ}C$. The sulfonic acid group for battery separators were prepared by radiation-induced grafting of styrene onto PNF and by the subsequent sulfonation of polystyrene graft chains. The sulfonated PNF was characterized by XPS, SEM, DSC, TGA and porosimeter. The electrochemical properties such as electrolyte retension, electrical resistance, and transport number of the $K^+ions$ were evaluated after sulfonation. It was found that the electrolyte retension increased, whereas the electrical resistance decreased with increasing sulfonic acid content. The transport number of $K^+$ in PNF with sulfonic acid of 0.22 ~ 3.60 mmol/g was to be 0.90 ~ 0.93.

Tensile Property Analysis of NCF Composite Laminated Structure for HP-CRTM Forming Process (HP-CRTM 성형공법을 적용하기 위한 NCF 복합재 적층구조에 따른 인장특성 분석)

  • Byeon, Ki-Seok;Shin, Yu-Jeong;Jeung, Han-Kyu;Park, Si-Woo;Roh, Chun-Su;Je, Jin-Soo;Kwon, Ki-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.59-64
    • /
    • 2019
  • In recent years, the HP-CRTM method, which has the ability to produce carbon fiber-reinforce plastic composites at high speeds, has come into the spotlight in the automotive parts industry, which demands high productivity. Multi-axial carbon fabric, an intermediate material used in this HP-CRTM molding process, consists of layered fibers without crimp, which makes it better in terms of tensile and shear strength than the original woven fabrics. The NCF (non-crimp fabric) can form the layers of the carbon fiber, which have different longitudinal and lateral directions, and ${\pm}{\theta}$ degrees, depending on the product's properties. In this research, preforms were made with carbon fibers of ${\pm}45^{\circ}$ and $0/90^{\circ}$, which were lamination structures under seven different conditions, in order to create the optimal laminated structure for automobile reinforcement center floor tunnels. Carbon fiber composites were created using each of the seven differently laminated preforms, and polyurethane was used as the base material. The specimens were manufactured in accordance with the ASTM D3039 standards, and the effect of the NCF lamination structure on the mechanical properties was confirmed by a tensile test.

Performance and Stability Evaluation of Muscle Activation (EMG) Measurement Electrodes According to Layer Design (근활성도(EMG) 측정 전극 레이어 설계에 따른 성능 및 안정성 평가)

  • Bon-Hak Koo;Dong-Hee Lee;Joo-Yong Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.4
    • /
    • pp.41-50
    • /
    • 2023
  • This study aims to develop electromyography (EMG) textile electrodes and assess their performance and signal stability by examining variations in layer count and fabric types. We fabricated the electrodes through layering and pressing techniques, focusing on configurations with different layer counts (Layer-0, Layer-1, and Layer-2). Our findings indicate that layer presence significantly influences muscle activation measurements, with enhanced performance correlated with increased layer numbers. Subsequently, we created electrodes from five distinct fabrics (neoprene, spandex cushion, 100% polyester, nylon spandex, and cotton canvas), each maintaining a Layer-2 structure. In performance tests, nylon spandex fabric, particularly heavier variants, outperformed others, while the spandex cushion electrodes showed superior stability in muscle activation signal acquisition. This research elucidates the connection between electrode performance and factors like layer number and electrode-skin contact area. It suggests a novel approach to electrode design, focusing on layer properties and targeted pressure application on specific sensor areas, rather than uniformly increasing sleeve pressure.

Preparation of Crosslinked Polyvinylbenzylchloride Anion Exchange Composite Membranes using Fabric Substrates and Their Electrodialysis Application for Ion Removal (천지지체를 사용한 가교화된 폴리비닐벤질클로라이드 음이온교환 복합막의 제조와 전기투석을 이용한 이온 제거 특성연구)

  • Lee, Jung-Soo;Chang, Bong-Jun;Kim, Jeong-Hoon;Kim, Dong-Kwon
    • Membrane Journal
    • /
    • v.20 no.2
    • /
    • pp.142-150
    • /
    • 2010
  • A series of anion exchange composite membranes were prepared and characterized for electrodialysis processes used in the removal of nitrate nitrogen and ions in groundwater. The membranes were prepared as follows; first, fabric substrates were fully impregnated with monomer mixtures of vinylbenzylchloride (VBC), divinylbenzene (DVB), Styrene (ST) and $\alpha,\alpha$-Azobis(isobutyronitrile) (AIBN). Second, they were thermally polymerized to yield crosslinked poly (VBCST- DVB)/fabric composite membranes. Finally, the membranes were treated with trimethylamine (TMA) / acetone to give $-N^+(CH_3)_3^-$-containing poly(VBC-ST-DVB)/fabric membranes. The basic membrane properties such as ion exchange capacity (IEC), electric resistance and water content of the resulting membranes were measured as a function of VBC/DVB and TMA/Acetone content. As a result, the composite membranes showed lower electric resistance and higher IEC than commercial anion exchange membranes (AMX, Astom). Electrodialysis tests using the prepared membranes were carried out for the removal of various ions such as $NaNO_3$, $MgSO_4$ and NaF for 60 minutes. The results showed that the ions were removed below 1 mg/L within about 15 minutes which indicates that the anion exchange membranes prepared here could be applied to the electrodialysis process. as can be seen in the following that the ion conductivity values were almost no change after 15 minutes electrodialysis.

The Physical Property of the Structural Color Yarn and Fabric for Emotional Garment Using Biomimetic Technology (생체모방기술을 응용한 감성의류용 구조발색사와 직물의 물성)

  • Kim, Hyun-Ah;Kim, Seung-Jin
    • Science of Emotion and Sensibility
    • /
    • v.15 no.1
    • /
    • pp.141-148
    • /
    • 2012
  • This study investigated the structural coloration and fabric hand of the caustic reduced fabrics for emotional garment using structural color yarns, which was spun by 37 alternating nylon and polyester layers capable of producing basic colors using biomimetic technology. The colorations of the three kinds of structural color yarns were confirmed using multi angle spectro-photometer, and their triangular cross sections composed with 37 alternating nylon and polyester layers were measured using SEM and were discussed with layer length in relation with coloration and spinning conditions were also set up. The apparent color difference and reflectance of the three kinds of fabrics with different density and weave pattern were analysed as ranging from 400nm to 700nm. The optimum fabric structural design which is made by warp and weft densities(194ends/in ${\times}$ 105picks/in) and caustic reduction condition by $100^{\circ}C$ temperature and 60minutes with NaOH, 20g/l solution were decided through analysis of the mechanical properties and fabric hands of these three kinds of fabrics treated with 3 kinds of the caustic reduction conditions. And it was shown that the rate of caustic reduction was increased from 13% to 23% with increasing temperature and time of caustic reduction. The extensibility, bending rigidity and shear modulus of caustic reduction treated fabrics were decreased by treatment of caustic reduction, on the other hand fabric compressibility was increased. And it was shown that the hand value of specimen number one which was treated with temperature $100^{\circ}C$ and time 60minute was the best and the hand of this fabric was better than that of Morpho $fabric^{(R)}$ made by Teijin co. Japan.

  • PDF

Reduction of VOCs and the Antibacterial Effect of a Visible-Light Responsive Polydopamine (PDA) Layer-TiO2 on Glass Fiber Fabric (Polydopamine (PDA)-TiO2 코팅 유리섬유 직물을 이용한 VOCs의 저감 성능 및 항균성 연구)

  • Park, Seo-Hyun;Choi, Yein;Lee, Hong Joo;Park, Chan-gyu
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.6
    • /
    • pp.540-547
    • /
    • 2021
  • Background: Indoor air pollutants are caused by a number of factors, such as coming in from the outside or being generated by internal activities. Typical indoor air pollutants include nitrogen dioxide and carbon monoxide from household items such as heating appliances and volatile organic compounds from building materials. In addition there is carbon dioxide from human breathing and bacteria from speaking, coughing, and sneezing. Objectives: According to recent research results, most indoor air pollution is known to be greatly affected by internal factors such as burning (biomass for cooking) and various pollutants. These pollutants can have a fatal effect on the human body due to a lack of ventilation facilities. Methods: We fabricated a polydopamine (PDA) layer with Ti substrates as a coating on supported glass fiber fabric to enhance its photo-activity. The PDA layer with TiO2 was covalently attached to glass fiber fabric using the drop-casting method. The roughness and functional groups of the surface of the Ti substrate/PDA coated glass fiber fabric were verified through infrared imaging microscopy and field emission scanning electron microscopy (FE-SEM). The obtained hybrid Ti substrate/PDA coated glass fiber fabric was investigated for photocatalytic activity by the removal of ammonia and an epidermal Staphylococcus aureus reduction test with lamp (250 nm, 405 nm wavelength) at 24℃. Results: Antibacterial properties were found to reduce epidermal staphylococcus aureus in the Ti substrate/PDA coated glass fiber fabric under 405 nm after three hours. In addition, the Ti substrate/PDA coated glass fiber fabric of VOC reduction rate for ammonia was 50% under 405 nm after 30 min. Conclusions: An electron-hole pair due to photoexcitation is generated in the PDA layer and transferred to the conduction band of TiO2. This generates a superoxide radical that degrades ammonia and removes epidermal Staphylococcus aureus.

Effect of Nonionic Surfactant Solutions on Wetting and Absorbency of Polyethylene Terephthalate(PET) Fabrics (Part II) -Surfactants Characteristics and Fabric Properties- (비이온계 계면활성제 수용액이 PET직물의 습윤특성에 미치는 영향 (제2보) -계면활성제와 직물의 특성-)

  • Kim, Chun-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.12 s.148
    • /
    • pp.1546-1553
    • /
    • 2005
  • The wetting behavior and liquid transport of nonionic surfactant solutions; Span 20 and Tween 20, 40, 60, 80, 21, 61, 81, 65 & 85: in polyethylene terephthalate(PET) fabrics are reported. Five different PET fabrics are used in this study. PET 1, 2 & 3 have different compactness in structure. PET 4 & 5 have similar physical properties to PET 2, however, PET 4 has heat set finish and PET 5 with rewetting agent. The wetting and water retention properties of PET fabrics are greatly improved by addition of nonionic surfactants. The aqueous liquid retention(W) vs. cosq and W vs. adhesion tension has positive linear relationship. Hydrophilic surfactants which have short hydrophobes and surfactants with unsaturated hydrophobe structures are more efffctive in improving the wetting properties of PET fabrics. PET fabric which has larger thread spacing shows greater value of water retention ratio(W/H) than PET fabric with smaller thread spacing if there are no surfactants present in the system, however, W/H values become very similar among these PET fabrics when the surfactants are added. If there are no surfactants present in the system, PET with heat set finish has smaller value and PET with rewetting agent has greater value of W/H than PET without finish even though the fabrics have the similar physical properties.