• Title/Summary/Keyword: FTA(Failure tree analysis)

Search Result 84, Processing Time 0.031 seconds

The method of risk assessment by AMEA (AMEA을 활용한 위험성평가 방법)

  • Kim, Geon-Ho;Kwon, Sang-Myeon;Lee, Kang-Bok;Kim, Yoon-Sung;Lee, Jai-Won;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.2
    • /
    • pp.97-111
    • /
    • 2007
  • In risk assessment, there are several methods such as Safety Review, Checklist, FMEA(Failure Mode and Effect Analysis), FTA(Fault Tree Analysis), ETA (Event Tree Analysis) etc, however, the level of accident is indentified by the probability of accident and severity resulting from accident which used widely in assessing accidents and disasters. In this paper, the risk assessment method to decide the level of risk will be introduced by using severity, frequency and detection according to accident theory.

Life-cycle estimation of HVDC full-bridge sub-module considering operational condition and redundancy (HVDC 풀-브리지 서브모듈의 동작 조건과 여유율을 고려한 수명예측)

  • Kang, Feel-soon;Song, Sung-Geun
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1208-1217
    • /
    • 2019
  • The life-cycle prediction of the sub-module which is the unit system of MMC is very important from the viewpoint of maintenance and economic feasibility of HVDC system. However, the life-cycle prediction that considers only the type, number and combination of parts is a generalized result that does not take into account the operating condition of the sub-module, and may significantly differ from the life-cycle of the actual one. Therefore, we design a fault tree for the purpose of reflecting the operation characteristics of the full-bridge sub-module and apply the MIL-HDBK-217F to the failure rate of the basic event to predict the life-cycle of the full-bridge sub-module. It compares the life-cycle expectancy of the conventional failure rate analysis with the proposed fault-tree analysis and compares the lifetime according to whether the redundancy of the full-bridge sub-module is considered.

Accelerated Life Test and Analysis of Track Drive Unit for an Excavator (주행 구동 유니트의 가속 수명 시험 및 분석)

  • Lee Y.B.;Park J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.2
    • /
    • pp.1-7
    • /
    • 2005
  • For the reliability evaluation of the track drive unit(TDU), firstly, we analyzed the major failure modes through FMEA(failure mode & effects analysis), FTA(failure tree analysis), and 2-stage QFD(quality function deployment), and then quantitatively determined the priority order of test items. The Minitab analysis was also performed for prediction of life distribution and parameters of TDU by use of field failure data collected from 430 excavators for two years. In addition, we converted the fluctuation load in field conditions into the equivalent load, and for evaluation of the accelerated lift by the cumulative fatigues, the equivalent load is again divided into the fluctuation load by reference of test time. And then, by use of the test method in this paper, the acceleration factor(AF) of needle bearing inside planetary gear which is the most weakly designed part of TDU is achieved as 5.3. This paper presents the quantitative selection method of test items for reliability evaluation, the determination method of the accelerated life test time, and the method of non-failure test time based on a few of samples. And, we proved the propriety of the proposed methods by experiments using a TDU for a 30 ton excavator.

  • PDF

Improvement of Reception Noise During Formation Flight of Aircraft (항공기 편대 비행 중 수신 잡음 개선 연구)

  • Kwon, Jung-Hyuk;Seo, Hong-Eun;Lee, Wang-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.497-504
    • /
    • 2021
  • This paper presents improvement of the reception noise suppression method during formation flights of aircraft. Since aircraft communication equipment is very important for flight mission and safety to perform the functions of internal/external communications, it is required to implement noise-free, clean communication quality, and transmitting/receiving functions. Therefore, the FTA (Fault Tree Analysis) analysis and failure search were performed on the reception noise, and the internal noise of the intercom that affected the reception noise and the none-transmition phenomenon was identified. We changed the multiple grounds of the intercom to a single ground and applied an improved method of filtering the DC Offset voltage. As a result, the voice quality of the communication system of the aircraft was improved through the reduction of the reception noise during formation flights, and it was verified by ground and flight tests.

Risk management applicable to shield TBM tunnel: I. Risk factor analysis (쉴드 TBM 터널에 적용 가능한 리스크 관리: I. 리스크 요인 분석)

  • Hyun, Ki-Chang;Min, Sang-Yoon;Moon, Joon-Bai;Jeong, Gyeong-Hwan;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.6
    • /
    • pp.667-681
    • /
    • 2012
  • In general, risk management consists of a series of processes or steps including risk identification, risk analysis, risk evaluation, risk mitigation measures, and risk re-evaluation. In this paper, potential risk factors that occur in shield TBM tunnels were investigated based on many previous case studies and questionaries to tunnel experts. The risk factors were classified as geological, design or construction management features. Fault Tree was set up by dividing all feasible risks into four groups that associated with: cutter; machine confinement; mucking (driving) and segments. From the Fault Tree Analysis (FTA), 12 risk items were identified and the probability of failure of each chosen risk item was obtained.

Safety Assessment of LNG Transferring System subjected to gas leakage using FMEA and FTA

  • Lee, Jang-Hyun;Hwang, Seyun;Kim, Sungchan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.125-135
    • /
    • 2017
  • The paper considers the practical application of the FMEA(Failure Mode and Effect Analysis) method to assess the operational reliability of the LNG(Liquefied Natural Gas) transfer system, which is a potential problem for the connection between the LNG FPSO and LNG carrier. Hazard Identification (HAZID) and Hazard operability (HAZOP) are applied to identify the risks and hazards during the operation of LNG transfer system. The approach is performed for the FMEA to assess the reliability based on the detection of defects typical to LNG transfer system. FTA and FMEA associated with a probabilistic risk database to the operation scenarios are applied to assess the risk. After providing an outline of the safety assessment procedure for the operational problems of system, safety assessment example is presented, providing details on the fault tree of operational accident, safety assessment, and risk measures.

Reliability analysis for substation based on the failure rate data the facilities (설비의 고장을 데이터를 이용한 변전소 신뢰도 분석 연구)

  • Lee, Y.H.;Baek, D.H.;Jang, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.29-31
    • /
    • 2006
  • The most crucial requirement of a power system is o supply quality electric energy to customers without interrution. This problem is directly related to reliability of power system. Reliability assessment of power system has been an important topic for the past several decades. This paper deals with reliability assessment of a 154kV power substation n KEPCO. In his paper, exponential distribution is used to calculate reliablity index. The failure rate data that are utilited for reliablity index based on the realistic system. Also, FTA(Fault Tree Analysis) is used to compute substation reliablity

  • PDF

On the Ensuring Safety and Reliability through the Application of ISO/PAS 21448 Analysis and STPA Methodology to Autonomous Vehicle

  • Kim, Min Joong;Choi, Kyoung Lak;Kim, Joo Uk;Kim, Tong Hyun;Kim, Young Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.169-177
    • /
    • 2021
  • Recently, the use of electric and electronic control systems is increasing in the automobile industry. This increase in the electric and electronic control system greatly increases the complexity of designing a vehicle, which leads to an increase in the malfunction of the system, and a safety problem due to the malfunction is becoming an issue. Based on IEC 61508 relating to the functional safety of electrical/electronic/programmable electronics, the ISO 26262 standard specific to the automotive sector was first established in 2011, and a revision was published in 2018. Malfunctions due to system failure are covered by ISO 26262, but ISO/PAS 21448 is proposed to deal with unintended malfunctions caused by changes in the surrounding environment. ISO 26262 sets out safety-related requirements for the entire life cycle. Functional safety analysis includes FTA (Fault Tree Analysis), FMEA (Failure Mode and Effect Analysis), and HAZOP (Hazard and Operability). These analysis have limitations in dealing with failures or errors caused by complex interrelationships because it is assumed that a failure or error affecting the risk occurs by a specific component. In order to overcome this limitation, it is necessary to apply the STPA (System Theoretic Process Analysis) technique.

The Comparative Quantitative Risk Assessment of LNG Tank Designs for the Safety Improvement of Above Ground Membrane Tank (지상식 멤브레인 LNG저장탱크 안전성 향상을 위한 설계형식별 정량적 위험성 비교 평가)

  • Lee S.R.;Kwon B.G.;Lee S.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.4 s.29
    • /
    • pp.57-61
    • /
    • 2005
  • The objective of paper is to carry out a comparative Quantitative Risk Assessment (QRA) of two KOGAS tank designs using a fault tree methodology, a standard 'Full Containment' tank and a 'Membrane' tank. For the membrane tank, both the initial KOGAS design and 4 modified KOGAS designs have been assessed, giving six separate cases. In this paper, the frequencies of releases are quantified using a fault tree approach. For clarity in the analysis, and to ensure consistency, all cases have been quantified using the same fault tree. Logic within the fault tree is used to select each of the cases. Full quantification of risks is often difficult, owing to a lack of relevant failure data, but the aim of this study has been to be as quantitative as possible, with full transparency of failure information. The most significant general cause of external LNG leaks is predicted to be a seismic event, which has been quantified nominally. 4modified KOGAS desiens to Prevent damage of bottom membrane panels that was shown in preparatory estimation could quantitively confirm safety improvement. According to result, the predicted frequencies of an external LNG leak for the full containment and modified membrane tanks are very similar, failures due to dropped pumps are predicted to be significantly greater for the membrane tank with thickened plate than for the full containment tank.

  • PDF

The Vulnerability Assessment of Hydro-pneumatic Suspension of Ground Combat Vehicles Using Vulnerable Area Method and DMEA (취약면적법과 DMEA를 활용한 지상전투차량 유공압 현가장치의 취약성 평가)

  • Nam, Myung Hoon;Park, Kang;Park, Woo Sung;Yoo, Chul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.2
    • /
    • pp.141-149
    • /
    • 2017
  • Vulnerability assesses the loss of major performance functions of GCV (Ground Combat Vehicles) when it is hit by enemy's shell. To decide the loss of major functions, it is determined what effects are on the performance of GCV when some components of GCV are failed. M&S (Modeling and Simulation) technology is used to vulnerability assessment. The hydro-pneumatic suspension is used as a sample part. The procedures of vulnerability assessment of the hydro-pneumatic suspension are shown as follows: 1) The components of the suspension are defined, and shot lines are generated evenly around the part. 2) The penetrated components are checked by using the penetration equation. 3) The function model of the suspension is designed by using IDEF0. 4) When the failure of the critical components of the suspension happens, its effect on the function of the suspension can be estimated using DMEA (Damage Mode and Effects Analysis). 5) The diagram of FTA (Fault Tree Analysis) is designed by exploiting DMEA. 6) The damage probability of the suspension is calculated by using FTA and vulnerable area method. In this paper, SLAP (Shot Line Analysis Program) which was developed based on COVART methodology. SLAP calculates the damage probability and visualizes the vulnerable areas of the suspension.