• Title/Summary/Keyword: FRP Bar

Search Result 106, Processing Time 0.029 seconds

An Investigation on Surface Flashover Characteristics of FRP in Several Insulation Gases for the Spacer of Cryogenic Bushing

  • Hwang, Jae-Sang;Shin, Woo-Ju;Seong, Jae-Kyu;Lee, Jong-Geon;Lee, Bang-Wook
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.20-23
    • /
    • 2012
  • Superconducting equipment has been actively investigated for securing the environment and energy technology (ET) in various parts of the world. Despite these movements, a high voltage cryogenic bushing, which plays an important role of interconnection between the electric power systems and superconducting devices, has not been fully developed due to severe insulation requirements. A gas insulated cryogenic bushing has been investigated as one of our projects since 2010. As a basic step to obtain the design parameters for cryogenic bushing, we focused on the surface flashover characteristics of glass fiber reinforced plastic (FRP) in several insulation gases. For the surface flashover tests, several insulation gases including $SF_6$, $CF_4$ and $N_2$ gas were prepared. Various length of FRP specimens were fabricated in order to obtain the fundamental data for creepage distance of FRP. The first specimen group was from 2 mm to 10 mm with 2 mm intervals and the second specimen group was from 20 mm to 100 mm with 20 mm intervals. And the gas pressure was varied from 1 bar to 4 bar. An AC overvoltage test and a lightning impulse test were performed. Then the experimental results of surface flashover were obtained and analyzed. Based on these results, it would be possible to design the optimum creepage distance of FRP in a cryogenic bushing.

An Experimental Study on Bond Characteristics of FRP Reinforcements with Various Surface-type (다양한 표면형상에 따른 FRP 보강재의 부착특성 실험연구)

  • Jung, Woo Tai;Park, Young Hwan;Park, Jong Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.279-286
    • /
    • 2011
  • FRP (Fiber Reinforced Polymer) tendons can be used as an alternative to solve the corrosion problem of steel tendons. Material properties of FRP tendons-bond strength, transfer length, development length-must be determined in order to apply to concrete structures. First of all, in case of application for pretension concrete members with CFRP tendons, transfer length is an important characteristic. The bond of the material characteristics should be demanded clearly to apply to PSC structures prestressed with FRP tendons. This paper investigated on the bond characteristics of FRP reinforcements with various surface-type. To determine the bond characteristics of FRP materials used in place of steel reinforcement or prestressing tendon in concrete, pull-out testing suggested by CAN/CSA S806-02 was performed. A total of 40 specimens were made of concrete cube with steel strands, deformed steel bar and 6 different surface shape FRP materials like carbon or E-glass. Results of the bonding tests presented that each specimen showed various behaviors as the bond stress-slip curve and compared with the bond characteristic of CFRP tendon developed in Korea.

Assessment of reliability-based FRP reinforcement ratio for concrete structures with recycled coarse aggregate

  • Ju, Minkwan;Park, Kyoungsoo;Lee, Kihong;Ahn, Ki Yong;Sim, Jongsung
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.399-405
    • /
    • 2019
  • The present study assessed the reliability-based reinforcement ratio of FRP reinforced concrete structure applying recycled coarse aggregate (RCA) concrete. The statistical characteristics of FRP bars and RCA concrete were investigated from the previous literatures and the mean value and standard deviation were employed for the reliability analysis. The statistics can be regarded as the material uncertainty for configuring the probability distribution model. The target bridge structure is the railway bridge with double T-beam section. The replacement ratios of RCA were 0%, 30%, 50%, and 100%. From the probability distribution analysis, the reliability-based reinforcement ratios of FRP bars were assessed with four cases according to the replacement ratio of RCA. The reinforcement ratio of FRP bars at RCA 100% showed about 17.3% higher than the RCA 0%, where the compressive strength at RCA 100% decreased up to 27.5% than RCA 0%. It was found that the decreased effect of the compressive strength of RCA concrete could be compensated with increase of the reinforcement ratio of FRP bars. This relationship obtained by the reliability analysis can be utilized as a useful information in structural design for FRP bar reinforced concrete structures applying RCA concrete.

A Degradation Characteristic of FRP Rebars Attacked by Combined Environmental Factors (복합환경인자에 의한 FRP 보강근의 성능저하 특성)

  • Oh, Hong Seob;Moon, Do Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.1-10
    • /
    • 2012
  • In spite of high resistant to corrosion and its strength, over the last two decades, concerns still remain about the durability of FRP materials under severe environmental and thermal exposures. In this paper, authors experimentally examine the combined degradation by thermal and chemical attacks in heterogeneous FRP rebar be made up with various fibers and resins. Five types of Carbon, Glass and Hybrid FRP rebars had manufactured by different process and surface patterns are adopted for the experiments such as weight change, interlaminar shear strength, SEM and FT-IR analysis. FRP specimens were immersed in alkaline or distilled solution up to 150 days and then thermal exposed on 60, 100, 150 and $300^{\circ}C$ for 30 minutes. From the test results, the degradation of FRP bars are influnced by the resin type and manufacturing process as well as the fiber, and ILSS of exposed FRP bar in solutions is slightly increased in initial stage and then decresed with the passing of immersed time. But, in this test, it is observed that the discrepancy of ILSS between degraded by alkaline solution and distilled water is negligible value.

An Experimental Study on the Strengtheing Effect of Reinforced Concrete Beams Strengthened by CFRP Rod (탄소섬유막대로 보강한 철근콘크리트 보의 보강효과에 관한 실험적 연구)

  • Park, Sung-Moo;Kim, Jae-Hun;Park, Kwang-Seob
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.3 s.13
    • /
    • pp.85-91
    • /
    • 2004
  • Rehabilitations of reinforced concrete(RC) structures using advanced fibre-reinfored plastic(FRP) composites has become very popular in last few years. Typical method of strengthening strategy using FRP composite is bonding the CFRP plate or sheet on the surface of existing concrete structures. Many researches, however, have shown that bonding FRP plate or sheet on the surface of concrete has tendancy to debond prematurely induced by stress concentrations at the end of the plate. In order for overcoming the premature failure, the filling-up method which places FRP-rod into the existing concrete sawing groove has been developed. Through filling-up test results, aims of this research is to investigate the efficiencies of the filling-up method and is to determine the availabilities of traditional flexural theories that has provided all over the world.

  • PDF

The Slope Reinforcement by use of FRP (FRP를 이용한 사면보강)

  • 이상덕;권오엽;최용기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.155-180
    • /
    • 2000
  • The pattern of domestic slope construction has been steadily changed from the simpled and small-scale to the large-scale and complicated one, frequently near the existing structures, as the density of population and the traffic increases. In some cases, the slopes become steeper and larger due to the road improvement and construction. For the rock slope, the existence of discontinuity cannot be disregarded and acts as an important factor on the slope stability. Most of the existing methods for stabilizing the slope were focused on reducing the slope angle. Under the specific geographic condition, it is necessary to concentrate more efforts on the research and development of supporting system for the slope stability. As a supporting system, it is often very advantageous to use the FRP pipe grouting method that is similar to the existing soil nailing method or the rock bolting method but uses the high strength FRP pipe as a principal reinforcement in place of steel bar. Through the FRP pipe, the grout material can be injected into the rock mass to improve its shear strength to the required value. .In this study, the characteristics of FRP are investigated by the laboratory tests and the field tests. And, the practical aspects of FRP method are reviewed and analyzed.

  • PDF

Finite element modeling of reinforced concrete beams externally bonded with PET-FRP laminates

  • Rami A. Hawileh;Maha A. Assad;Jamal A. Abdalla; M. Z. Naser
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.163-173
    • /
    • 2024
  • Fiber-reinforced polymers (FRP) have a proven strength enhancement capability when installed into Reinforced Concrete (RC) beams. The brittle failure of traditional FRP strengthening systems has attracted researchers to develop novel materials with improved strength and ductility properties. One such material is that known as polyethylene terephthalate (PET). This study presents a numerical investigation of the flexural behavior of reinforced concrete beams externally strengthened with PET-FRP systems. This material is distinguished by its large rupture strain, leading to an improvement in the ductility of the strengthened structural members compared to conventional FRPs. A three-dimensional (3-D) finite element (FE) model is developed in this study to predict the load-deflection response of a series of experimentally tested beams published in the literature. The numerical model incorporates constitutive material laws and bond-slip behavior between concrete and the strengthening system. Moreover, the validated model was applied in a parametric study to inspect the effect of concrete compressive strength, PET-FRP sheet length, and reinforcing steel bar diameter on the overall performance of concrete beams externally strengthened with PET-FRP.

Retrofit Capacity of Near-Surface-Mounted RC Beam by using FRP Plate (FRP 판으로 표면매입 보강된 철근콘크리트 보의 보강성능)

  • Seo, Soo Yeon;Choi, Ki Bong;Kwon, Yeong Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.18-26
    • /
    • 2012
  • Recently, research about Near-Surface-Mounted Rertofit (NSMR) method has been being widely performed as a method for retrofit of RC structure using FRP. This method requires additional work to make grooves during retrofit but makes it possible to improve retrofit effect and reduce the attack by environment. In this paper, the retrofit effect of NSMR method, especially the method using FRP plate instead of bar is investigated through experiment. Six RC beams were made and retrofitted using by FRP plate following the planned methods; Surface-Bonding Retrofit (SBR), NSMR without debonding region and NSMR with debonding region. Flexural capacity of all specimens was evaluated by beam test with simple support condition. As a result, NSMR method with FRP plate had more improved structural capacity than SBR method. The calculation process of ACI 440-2R can be used to predict the member retrofitted by NSMR with FRP plate with consideration on the three anchorage failure mechanism.

A Study on the Mechanical Characteristics of Ho1low Type Glass Fiber Reinforced Plastics Re-bar (중공형 GFRP리바의 기계적 특성에 관한 연구)

  • 한길영;이동기;오환교;홍석주;신용욱;배시연
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.7-11
    • /
    • 2000
  • In this paper was studied on the mechanical characteristics of Glass Fiber Reinforced Plastics(GFRP) of the steel bar it is to replace. The advantage of FRP such as high strength, low weight and chemical inertness or noncorrosiveness can be fully exploited. GFRP bar were successfully fabricated at l0mm nominal diameters of solid and hollow types using a pultrusion method. Tensile and bending specimens from this bar were tested and compared with behavior of GFRP rebar and steel bar.

  • PDF

Reinforcing System(MFRI) for Concrete Structure using FRP ROD & High-performance Mortar (섬유복합재봉(FRP ROD)과 고강도 모르터를 이용한 철근 콘크리트 구조물의 휨 보강공법(MFRI) 공법)

  • Bae Ki-Sun;Park Sing-Hun;Lee Sang-Uk
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.59-65
    • /
    • 2005
  • This report is on the Reinforcing System(MFRI) for Concrete Structure using FRP ROD & High-Performance Mortar. The main characteristic of this system is as follow. First, the fiber rods in this system have seven times greater tensile strength than general reinforcing steel bars(re-bar) and the weight is a fifth lighter. Camels coated on the fiber rods' surfaces to improve adhesive strength and pull-out strength. Second, high strength shotcrete mortar is has very good workability and low rebound rate. After installing the Fiber Rods, Shotcrete mortar Is applied or sprayed to finish reinforcement. Finally, MFRI system has excellent fire-resisting performance and sogood tolerance against external environment by inserting fiber rods and reinforcing materials into mortar which has high compressive strength. It is applied to bridge slab, utility box and tunnel of civil engineering works, and beam and slab of building structures.