• Title/Summary/Keyword: FRP 강도특성

Search Result 119, Processing Time 0.027 seconds

Experimental Study on Global Buckling of Singly Symmetric FRP Members (일축대칭 FRP 부재의 전체좌굴에 관한 실험적 연구)

  • Lee, Seungsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.99-106
    • /
    • 2006
  • Due to single symmetry of cross section, T-shaped members are likely to buckle in a flexural-torsional mode when they are subjected to axial compression. Therefore, the flexural-torsional buckling can be regarded as a governing mode of global buckling. An experimental program has been carried out to investigate the flexural-torsional buckling behavior of pultruded T-shaped members. Two types of pultruded members were tested in the experiment, and they were made of either E-glass/vinylester or E-glass/polyester. Lay-up and thickness of reinforcing layers, volume fractions of each constituents in layers, mechanical properties were experimentally determined. Two sets of knife edge fixure were used to simulate simple support condition for flexure and twisting, and the lateral displacements and the angle of twist were measured using three potentiometers. Every specimen buckled in a flexural-torsional mode, and most of the specimens showed post-buckling strength.

Characteristics of Flexuarl-Shear Behavior of Beam Using Demonstrated CFRP Rod (국내 시범 생산 CFRP rod를 적용한 보 부재의 휨-전단 특성)

  • Choi, So-Yoeng;Kim, Il-Sun;Choi, Myoung-Sung;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.86-94
    • /
    • 2022
  • Replacement of FRP rod as steel reinforcement has been attracted significantly to prevent the degradation of the concrete structure due to corrosion. So, the technology development to extend the structure's service life by improving FRP properties has been proceeded worldwide. Accordingly, it is necessary to develop Korea's CFRP rod and CFRP grid, including the manufacturing techniques to improve the properties of high-strength and high-stiffness. Moreover, the research should be conducted to evaluate the structural behavior of the beams using the CFRP rod or grid. This study investigates the flexural and shear behavior of reinforced concrete beam using demonstrated CFRP rod as reinforcement according to the reinforcement ratio and shear span to depth ratio. From the results, when the reinforcement ratio is out of a specific range, it is seemed that the effect on performance improvement of the beam using CFRP rod is cancelled or not significant. Meanwhile, when the CFRP rod was used as reinforcement, the possibility of shear failure occurred, even steel stirrups were installed in the beam with CFRP rod as tensile reinforcement according to the Korean Design Standard. Therefore, when the CFRP rod is used as tensile reinforcement in a beam, it should be prepared that a specific limitation of reinforcement ratio and an investigation against shear failure. Also, the ductility of the beam using the CFRP rod is determined by the deformation energy evaluation method. So, the ductility should be investigated by applying the deformation energy evaluation method that reflects the structural behavior of the beam.

Fatigue Capacity of Concrete Beams Prestressed with Partially Bonded CFRP Tendons (CFRP 긴장재로 긴장된 부분비부착 콘크리트 보의 피로 성능)

  • Jeong, Sang-Mo;Lee, Cha-Don;Park, Sang-Yeol;Jeong, Yo-Sok;Park, Dong-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.333-336
    • /
    • 2008
  • CFRP tendons have been attempted in concrete structures as a substitute for steel tendons considering their many advantages such as the corrosion-resistance, light weight etc. However, the elastic behavior up to failure is likely to result in ductility problems. To overcome such problems, prestress concrete beams with partially bonded tendons have been developed and suggested. In this new system, the un-bonded part near the mid-span contributes to the improvement of ductility. And the bonded parts at both ends play a role as a safe anchorage. According to the previous research on the static behavior, the suggested method has demonstrated enough ductility and strength. However it is essential to verify the long-term safety for repetitive fatigue loads under service states. For this purpose, flexural fatigue loading tests were carried out in this research. This paper includes an experimental investigation on the static load-carrying capacities of the beams with or without fatigue tests. The results showed that the beams prestressed with partially bonded CFRP tendons possessed good fatigue capacity under the constant cyclic loads.

  • PDF

The study of the COS control stick with lighting equipment (발광형 COS조작봉의 안전작업 효과 분석)

  • Choi, Myeong-Ho;Ji, Yong-Heon;Kim, Dong-Sik;Lee, Soon-Bae;Choi, Sang-Jun;Jung, Eun-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2138.1_2139.1
    • /
    • 2009
  • COS 조작봉은 선로의 사고나 설비교체 또는 수리 등이 필요할 때 활선상태에서 COS를 개폐하기 위한 장비로서 보통 절연특성 및 강도가 우수하고 경량소재인 FRP(Fiberglass Reinforced Plastics)로 제작된다. 따라서 특고압 선로에서 작업 중 안전사고를 예방하기 위해 사용되는 장비인 만큼 안전거리 확보와 작업의 편리성을 고려하여 직접 조작봉을 연장하여 사용할 수 있도록 다단으로 제작되며, 조작봉의 크기는 작업조건에 따라 길이를 선택하여 사용할 수 있도록 2, 4, 6m급 등 길이에 따른 종류별로 생산되고 있다. 이러한 COS 조작봉의 사용특징은 장소와 시간에 관계없이 사용이 가능해야 하고, 특정한 사정에 의해선 작업자 혼자서 사용할 수 있도록 조작봉과 일체된 조명장치의 필요성이 항상 제기되어 왔던 문제이다. 본 논문에서는 이러한 문제점에 주안을 두고 조작봉과 일체된 전계검출에 의한 발광동작을 제어할 수 있는 발광형 COS 조작봉에 대해 각각의 구성별 요소들을 분석하고자 한다.

  • PDF

An Experimental Study on Concrete Bond Behavior According to Grid Spacing of CFRP Grid Reinforcement (격자형 CFRP 보강재의 격자간격에 따른 콘크리트 부착거동에 대한 실험적 연구)

  • Noh, Chi-Hoon;Jang, Nag-Seop;Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.73-81
    • /
    • 2022
  • Recently, as the service life of structures increased, the load-carrying capacity of deteriorated reinforced concrete, where corrosion of reinforcing bars occurs due to various causes, is frequently decreased. In order to address this problem, many studies on the bond characteristic of FRP (Fiber Reinforced Polymer) bars with corrosion resistance, light weight and high tensile strength have been conducted, however there are not many studies on the bond characteristic of grid-typed CFRP embedded in concrete. Therefore, in order to evaluate the bond characteristics of grid-typed CFRP and its usability as a substitute for steel rebar, a pull-out test is performed using the longitudinal bond length and transverse grid length of the grid-typed CFRP as variables. Through the pull-out test, the bond load-slip curve of the grid-typed CFRP is derived, and the bond behavior is analyzed. The total bond load equation is proposed as the sum of the bond force of the longitudinal bond length and the shear force of the grid in the transverse direction. Also, expressing the area of the bond load-slip curve as total work, the change in dissipated energy with respect to the slip is analyzed to examine the effect of the tranverse grid on the bond force.

Strengthening Effect of Axial Square Concrete Members Wrapped by CFRP sheet (CFRP 쉬트로 보강된 사각형 콘크리트 압축부재의 보강 효과)

  • Moon, Kyoung-Tae;Park, Sang-Yeol;Koh, Kwang-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.13-23
    • /
    • 2017
  • This study deals with the strengthening effect and behavioral characteristics of square concrete column wrapped with carbon FRP sheet. The increase in axial compression capacity comes from the confinement effect of wrapped CFRP sheet. Because of the shape of square concrete column, the confinement effect is smaller than that in circular column. For the experimental program, four parameters including the number of sheet, the size of column specimen, the aspect ratio, the corner rounding, and the transformation in shape from square to circular were selected to examine the strengthening effect and behavioral characteristics for each parameter. Experimental program comprised fifty five square concrete column specimens for different eleven types. The compression test results confirmed that the strengthening effect can be increased by the confinement of wrapped and bonded CFRP sheet. However, the confining effect was decreased with the increase of square column size. The other hand, the ductility in square concrete column greatly increased due to caging effect of CFRP sheet. The transformation in shape from square to circular considerably increased both the compressive strength and the ductility of the concrete column wrapped with CFRP sheet. In addition, using test results and existing studies, accuracy and reliability of the existing strength models for CFRP-confined square concrete are verified.

Comparison between Wire Rope and CFRP UD on Bending Analysis (엘리베이터용 와이어로프와 CFRP UD의 벤딩 해석 비교)

  • Park, Sung-Min;Shin, Dong-Woo;Kwon, Il-Jun;Yoo, Sung-Hun;Moon, Wan-Kee
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.378-382
    • /
    • 2015
  • With increasing population density and high-rise expansion of buildings in recent years, elevators have become to play a pivotal role in our everyday lives as most people take an elevator several times even in a day. The elevator penetration and distribution rates in Korea have increased dramatically every year, and the emergence of skyscrapers leads to accelerating the development of elevator industry. Carbon-fiber-reinforced plastics (CFRPs) exhibit better mechanical and thermal properties than steel suitable for uses as elevator wire ropes. In this paper, in order to analyze the properties of CFRPs, the tensile strength of unidirectional (UD) CFRP wire ropes was characterized and finite element analysis was conducted for bending simulation. Simulation results were compared.

Evaluation of Structural Safety of Polyethylene Boats by Drop Test Method (낙하시험에 의한 폴리에틸렌 보트의 구조 안전성 평가)

  • Lee, Sung-Riong;Kang, Gyung-Ju;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.531-542
    • /
    • 2017
  • The structural safety of small craft, such as steel ships and FRP ships, can be estimated using the measurement test of the hull plate thickness or the longitudinal bending strength test. A polyethylene boat is made using inexpensive HDPE and can be mass produced. The structural safety of a polyethylene boat cannot be guaranteed because a polyethylene boat hull is notspecified in the KR technical rules. The inspection procedure of sailing yachts and pleasure boats and drop test method of ISO standard 12215-5 propose the structural strength required for small crafts as the drop test height. Therefore, in this study, the drop test of a polyethylene boat hull was carried out based on the inspection procedure of a sailing yacht and pleasure boat and the drop test method of ISO standard 12215-5. The drop load was acquired by the drop acceleration ofa boat hull. Structural analysis and safety of a polyethylene boat were performed by the drop load and allowable stress criteria. The calculation results of the hull plate thickness by structural design specification of ISO standard 12215-5 showed that polyethylene boat hull was more than two times thicker than a steel ship hull and the boat hull determined by the inspection procedure of sailing yacht and pleasure boat and drop test method of ISO standard 12215-5 was more than 1.2 times thicker than the boat hull determined by structural design specification of ISO standard 12215-5. Therefore, inspection procedure of sailing yachts and pleasure boats and drop test method of ISO standard 12215-5 was much more conservative than the structural design specification of ISO standard 12215-5 and could be used as the structural design method of a polyethylene boat.

Experimental Analysis of Large Size Concrete-Filled Glass Fiber Reinforced Composite Piles Subjected to the Flexural Compression (대구경 콘크리트 충전 복합소재 파일의 휨-압축 거동에 대한 실험적 분석)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.519-529
    • /
    • 2009
  • Fiber reinforced composite materials have various advantages in mechanical and chemical aspects. Not only high fatigue and chemical resistance, but also high specific strength and stiffness are attained, and therefore, damping characteristics are beneficial to marine piles. Since piles used for marine structures are subjected to compression and bending as well, detailed research is necessary. Current study examine the mechanical behavior under flexural and/or compressive loads using concrete filled fiber reinforced plastic composite piles, which include large size diameter. 25 pile specimens which have various size of diameters and lengths were fabricated using hand lay-up or filament winding method to see the effect of fabrication method. The inner diameters of test specimens ranged from 165 mm to 600 mm, and the lengths of test specimens ranged from 1,350 mm to 8,000 mm. The strengths of the fill-in concrete were 27 and 40 MPa. Fiber volumes used in circumferential and axial directions are varied in order to see the difference. For some tubes, spiral inner grooves were fabricated to reduce shear deformation between concrete and tube. It was observed that the piles made using filament winding method showed higher flexural stiffness than those made using hand lay-up. The flexural stiffness of piles decreases from the early loading stage, and this phenomenon does not disappear even when the inner spiral grooves were introduced. It means that the relative shear deformation between the concrete and tube wasn't able to be removed.