• Title/Summary/Keyword: FPGA 설계

Search Result 1,067, Processing Time 0.025 seconds

Education equipment for FPGA-based multimedia player design (FPGA 기반의 멀티미디어 재생기 설계 교육용 장비)

  • Yu, Yun Seop
    • Journal of Practical Engineering Education
    • /
    • v.6 no.2
    • /
    • pp.91-97
    • /
    • 2014
  • Education equipment for field programmable gate array (FPGA) based multimedia player design is introduced. Using the education equipment, an example of hardware design for color detection and augment reality (AR) game is described, and an example of syllabus for "Digital system design using FPGA" course is introduced. Using the education equipment, students can develop the ability to design some hardware, and to train the ability for the creative capstone design through conceptual, partial-level, and detail designs. By controlling audio codec, system-on-chip (SOC) design skills combining a NIOS II soft microprocessor and digital hardware in one FPGA chip are improved. The ability to apply wireless communication and LabView to FPGA-based digital design is also increased.

Education Equipment for FPGA Design of Sensor-based IOT System (센서 기반의 IOT 시스템의 FPGA 설계 교육용 장비)

  • Cho, Byung-woo;Kim, Nam-young;Yu, Yun-seop
    • Journal of Practical Engineering Education
    • /
    • v.8 no.2
    • /
    • pp.111-120
    • /
    • 2016
  • Education equipment for field programmable gate array (FPGA) design of sensor-based IOT (Internet Of Thing) system is introduced. Because sensors have different interfaces, several types of interface controller on FPGA need. Using this equipment, several types of interface controller, which can control ADC (analog-to-digital converter) for analog sensor outputs and $I^2C$ (Inter-Integrated Circuit), SPI (Serial Peripheral Interface Bus), and GPIO (General-Purpose Input/Output) for digital sensor outputs, can be designed on FPGA. Image processing hardware using image sensors and display controller for real and image-processed images or videos can be design on FPGA chip. This equipment can design a SOC (System On Chip) consisting of a hard process core on Linux OS and a FPGA block for IOT system which can communicate with wire and wireless networks. Using the education equipment, an example of hardware design using image sensor and accelerometer is described, and an example of syllabus for "Digital system design using FPGA" course is introduced. Using the education equipment, students can develop the ability to design some hardware, and to train the ability for the creative capstone design through conceptual, partial-level, and detail designs.

Debugging Problem for Multi-Million Gates FPGAs and the Way to Solve It (초고집적 FPGA디버깅의 문제점 및 해결책)

  • Yang, Se-Yang
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.4
    • /
    • pp.84-92
    • /
    • 2002
  • As today's field programmable gate arrays have very large logic capacity as well as relatively fast operation speed, they're widely used in many application areas. However, debugging the design implemented in FPGA's is very time-consuming and painful as the internal signal probing usually requires large number of FPGA re-compilations, which take tremendously long time. In this paper, we analyze the problems in FPGA debugging and propose a new powerful debugging solution. With the proposed FPGA debugging solution, we can guarantee not only to provide 100% internal signal visibility without FPGA re-compilation for the design in FPGA's, but also to identify at least one design bug per FPGA compilation. An experimental result has clearly shown the proposed approach to FPGA debugging very powerful and practical.

FPGA-Based Post-Quantum Cryptography Hardware Accelerator Design using High Level Synthesis (HLS 를 이용한 FPGA 기반 양자내성암호 하드웨어 가속기 설계)

  • Haesung Jung;Hanyoung Lee;Hanho Lee
    • Transactions on Semiconductor Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • This paper presents the design and implementation of Crystals-Kyber, a next-generation postquantum cryptography, as a hardware accelerator on an FPGA using High-Level Synthesis (HLS). We optimized the Crystals-Kyber algorithm using various directives provided by Vitis HLS, configured the AXI interface, and designed a hardware accelerator that can be implemented on an FPGA. Then, we used Vivado tool to design the IP block and implement it on the ZYNQ ZCU106 FPGA. Finally, the video was recorded and H.264 compressed with Python code in the PYNQ framework, and the video encryption and decryption were accelerated using Crystals-Kyber hardware accelerator implemented on the FPGA.

Implementation of FPGA Verification System with Slave FIFO Interface and FX3 USB 3 Bridge Chip (FX3 USB 3 브릿지 칩과 slave FIFO 인터페이스를 사용하는 FPGA 검증 시스템 구현)

  • Choi, Byeong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.259-266
    • /
    • 2021
  • USB bus not only works with convenience but also transmits data fast and becomes a standard peripheral interface between FPGA development board and personal computer. In this paper FPGA verification system with slave FIFO interface for Cypress FX3 USB 3 bridge chip was implemented. The designed slave FIFO interface consists of host interface module based on FIFO structure, master bus controller and command decoder and supports streaming communication interface for FX3 bridge chip and memory-mapped input and output interface for user design circuit. The ZestSC3 board with Cypress FX3 USB 3 bridge chip and Xilinx Artix FPGA(XC7A35T-1C5G3241) was used to implement FPGA verification system. It was verified that the FPGA verification system for user design circuit operated correctly under various clock frequencies using GUI software developed by visual C# and C++ DLL. The designed slave FIFO interface for FPGA verification system has modular structure and can be applicable to the different user designs with memory-mapped I/O interface.

Optimized DES Core Implementation for Commercial FPGA Cluster System (상용 FPGA 클러스터 시스템 기반의 최적화된 DES 코어 설계)

  • Jung, Eun-Gu;Park, Il-Hwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.2
    • /
    • pp.131-138
    • /
    • 2011
  • The previous FPGA cluster systems for a brute force search of DES keyspace have showed cost efficient performance, but the research on optimized implementation of the DES algorithm on a single FPGA has been insufficient. In this paper, the optimized DES implementation for a single FPGA of the commercial FPGA cluster system with 77 Xilinx Virtex5-LX50 FPGAs is proposed. Design space exploration using the number of pipeline stages in a DES core, the number of DES cores and the maximum clock frequency of a DES core is performed which leads to integrating 16 DES cores running at 333MHz. Also low power design is applied to reduce the loss of performance caused by limitation of power supply on each FPGA which results in fitting 8 DES cores running at 333MHz. When the proposed DES implementations would be used in the FPGA cluster system, it is estimated that the DES key would be found at most 2.03 days and 4.06 days respectively.

Implementation of Wireless Controller with FPGA and Microprocessor (FPGA 및 마이크로프로세서를 적용한 무선컨트롤러 구현)

  • 윤성기;이규선;강병권
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.405-408
    • /
    • 2004
  • 본 논문에서는 FPGA와 마이크로프로세서를 이용하여 One Board화된 무선 콘트롤러 시스템의 기저대역부를 설계 하였다. 송신부에서는 컴퓨터와 연결된 마이크로프로세서부에서 컴퓨터를 통해 입력된 데이터를 병렬로 FPGA부로 전송하여 PN_code를 이용한 대역확산 거쳐 전송하고, 수신부에서는 대역역확산를 사용하여 데이터를 다시 수신측 마이크로프로세서를 통해 확인하였다. FPGA 설계는 Xilinx사의 FPGA 디자인 툴인 Xilinx Foundation3.1을 사용하였으며, FPGA configuration을 위한 타이밍 시뮬레이션을 수행하였고. Xilinx사의 SPARTAN2 2S100PQ208칩에 downloading 한 후 Agilent사의 1681A logic analyzer를 사용하여 설계된 회로의 동작을 확인 하였다. 또한 데이터의 입출력을 CPU부를 통해 컴퓨터에서 모니터링 할 수 있도록 설계하였다.

  • PDF

A Design of FPGA Self-test Circuit Reusing FPGA Boundary Scan Chain (FPGA 경계 스캔 체인을 재활용한 FPGA 자가 테스트 회로 설계)

  • Yoon, Hyunsik;Kang, Taegeun;Yi, Hyunbean
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.70-76
    • /
    • 2015
  • This paper introduces an FPGA self-test architecture reusing FPGA boundary scan chain as self-test circuits. An FPGA boundary scan cell is two or three times bigger than a normal boundary scan cell because it is used for configuring the function of input/output pins functions as well as testing and debugging. Accordingly, we analyze the architecture of an FPGA boundary scan cell in detail and design a set of built-in self-test (BIST) circuits in which FPGA boundary scan chain and a small amount of FPGA logic elements. By reusing FPGA boundary scan chain for self-test, we can reduce area overhead and perform a processor based on-board FPGA testing/monitoring. Experimental results show the area overhead comparison and simulation results.

Design of Interface Module for Driving of Image Processing Using FPGA (FPGA를 이용한 영상처리 구동을 위한 정합모듈 설계)

  • Jung, Sung-Hyuck;Kim, Jung-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.2071-2077
    • /
    • 2010
  • Interface modules design between image sensor and external components are designed by FPGA (Field Programmable Gate Array) in this paper. Generally speaking, to satisfy synchronization for the poor quality data in image, SRAM is needed. To receive synchronization signal and image signal data with pixel dimension, the proposed interface logic technique is implemented. From the proposed technique, we can obtain more clear screen by implementing with pixel dimension. Operating frequency of image sensor and that of TFT-LCD are 50MHz and 6.5MHz, respectively. Most of control logic functions are embedded in FPGA. The designed logic gate counter has 33,216 and is designed by Quartus II.

FPGA Implementation and Verification of RISC-V Processor (RISC-V 프로세서의 FPGA 구현 및 검증)

  • Jongbok Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.5
    • /
    • pp.115-121
    • /
    • 2023
  • RISC-V is an open-source instruction set architecture, and anyone can freely design and implement a RISC-V microprocessor. This paper designes and simulates the RISC-V architecture, synthesizing it in FPGA and verifying it using logic analyzer (ILA). RISC-V core is written in SystemVerilog, which has efficient design and high reusability, and can be used in various application fields. The RISC-V core is implemented as hardware by synthesizing it on the Ultra96-V2 FPGA board using Vivado, and the accuracy and operation of the design are verified through Integrated Logic Analyzer(ILA). As a result of the experiment, it is confirmed that the designed RISC-V core performs the expected operation, and these results can contribute to the design and verification of RISC-V based systems.