• Title/Summary/Keyword: FOUNDATION

Search Result 10,699, Processing Time 0.037 seconds

Field test and research on shield cutting pile penetrating cement soil single pile composite foundation

  • Ma, Shi-ju;Li, Ming-yu;Guo, Yuan-cheng;Safaei, Babak
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.513-521
    • /
    • 2020
  • In this paper, due to the need for cutting cement-soil group pile composite foundation under the 7-story masonry structure of Zhenghe District and the shield tunnel of Zhengzhou Metro Line 5, a field test was conducted to directly cut cement-soil single pile composite foundation with diameter Ф=500 mm. Research results showed that the load transfer mechanism of composite foundation was not changed before and after shield tunnel cut the pile, and pile body and the soil between piles was still responsible for overburden load. The construction disturbance of shield cutting pile is a complicated mechanical process. The load carried by the original pile body was affected by the disturbance effect of pile cutting construction. Also, the fraction of the load carried by the original pile body was transferred to the soil between the piles and therefore, the bearing capacity of composite foundation was not decreased. Only the fractions of the load carried by pile and the soil between piles were distributed. On-site monitoring results showed that the settlement of pressure-bearing plates produced during shield cutting stage accounted for about 7% of total settlement. After the completion of pile cutting, the settlements of bearing plates generated by shield machine during residual pile composite foundation stage and shield machine tail were far away from residual pile composite foundation stage which accounted for about 15% and 74% of total settlement, respectively. In order to reduce the impact of shield cutting pile construction on the settlement of upper composite foundation, it was recommended to take measures such as optimization of shield construction parameters, radial grouting reinforcement and "clay shock" grouting within the disturbance range of shield cutting pile construction. Before pile cutting, the pile-soil stress ratio n of composite foundation was 2.437. After the shield cut pile is completed, the soil around the lining structure is gradually consolidated and reshaped, and residual pile composite foundation reaches a new state of force balance. This was because the condensation of grouting layer could increase the resistance of remaining pile end and friction resistance of the side of the pile.

Rotatable sphincterotome as a rescue device for endoscopic retrograde cholangiopancreatography cannulation: a single-center experience

  • Takeshi Okamoto;Takashi Sasaki;Tsuyoshi Takeda;Takafumi Mie;Chinatsu Mori;Takaaki Furukawa;Yuto Yamada;Akiyoshi Kasuga;Masato Matsuyama;Masato Ozaka;Naoki Sasahira
    • Clinical Endoscopy
    • /
    • v.57 no.1
    • /
    • pp.96-104
    • /
    • 2024
  • Background/Aims: Selective bile duct or pancreatic duct cannulation remains a significant initial hurdle in endoscopic retrograde cholangiopancreatography (ERCP) despite advances in endoscopy and accessories. This study evaluated our experience with a rotatable sphincterotome in cases of difficult cannulation. Methods: We retrospectively reviewed ERCP cases using TRUEtome, a rotatable sphincterotome, as a rescue device for cannulation at a cancer institute in Japan from October 2014 to December 2021. Results: TRUEtome was used in 88 patients. Duodenoscopes were used for 51 patients, while single-balloon enteroscopes (SBE) were used for 37 patients. TRUEtome was used for biliary and pancreatic duct cannulation (84.1%), intrahepatic bile duct selection (12.5%), and strictures of the afferent limb (3.4%). Cannulation success rates were similar in the duodenoscope and SBE groups (86.3% vs. 75.7%, p=0.213). TRUEtome was more commonly used in cases with steep cannulation angles in the duodenoscope group and in cases requiring cannulation in different directions in the SBE group. There were no significant differences in adverse events between the two groups. Conclusions: The cannulation sphincterotome was useful for difficult cannulations in both unaltered and surgically altered anatomies. It may be an option to consider before high-risk procedures such as precut and endoscopic ultrasound-guided rendezvous techniques.

Risk factors for recurrent stenosis after balloon dilation for benign hepaticojejunostomy anastomotic stricture

  • Takafumi Mie;Takashi Sasaki;Takeshi Okamoto;Tsuyoshi Takeda;Chinatsu Mori;Yuto Yamada;Takaaki Furukawa;Akiyoshi Kasuga;Masato Matsuyama;Masato Ozaka;Naoki Sasahira
    • Clinical Endoscopy
    • /
    • v.57 no.2
    • /
    • pp.253-262
    • /
    • 2024
  • Background/Aims: Hepaticojejunostomy anastomotic stricture (HJAS) is a feared adverse event associated with hepatopancreatobiliary surgery. Although balloon dilation for benign HJAS during endoscopic retrograde cholangiopancreatography with balloon-assisted enteroscopy has been reported to be useful, the treatment strategy remains controversial. Therefore, we evaluated the outcomes and risk factors of recurrent stenosis after balloon dilation alone for benign HJAS. Methods: We retrospectively analyzed consecutive patients who underwent balloon-assisted enteroscopy-endoscopic retrograde cholangiopancreatography for benign HJAS at our institution between July 2014 and December 2020. Results: Forty-six patients were included, 16 of whom had recurrent HJAS after balloon dilation. The patency rates at 1 and 2 years after balloon dilation were 76.8% and 64.2%, respectively. Presence of a residual balloon notch during balloon dilation was an independent predictor of recurrence (hazard ratio, 2.80; 95% confidence interval, 1.01-7.78; p=0.048), whereas HJAS within postoperative 1 year tended to be associated with recurrence (hazard ratio, 2.43; 95% confidence interval, 0.85-6.89; p=0.096). The patency rates in patients without a residual balloon notch were 82.1% and 73.1% after 1 and 2 years, respectively. Conclusions: Balloon dilation alone may be a viable option for patients with benign HJAS without residual balloon notches on fluoroscopy.

Natural Frequencies of Euler-Bernoulli Beam with Open Cracks on Elastic Foundations

  • Shin Young-Jae;Yun Jong-Hak;Seong Kyeong-Youn;Kim Jae-Ho;Kang Sung-Hwang
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.467-472
    • /
    • 2006
  • A study of the natural vibrations of beam resting on elastic foundation with finite number of transverse open cracks is presented. Frequency equations are derived for beams with different end restraints. Euler-Bernoulli beam on Pasternak foundation and Euler-Bernoulli beam on Pasternak foundation are investigated. The cracks are modeled by massless substitute spring. The effects of the crack location, size and its number and the foundation constants, on the natural frequencies of the beam, are investigated.

Finite Element Vibration/Shock Analysis of Double Stage Elastic Mounting System with Viscoelastically Damped Foundation Structure (유한용소법을 이용한 점탄성 감쇠구조물이 포함된 2단 탄성마운트 시스템의 진동/충격응답 해석)

  • 정우진;류정수;배수룡;함일배
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.508-516
    • /
    • 2000
  • To study the possibility of F.E.M application to vibration and shock response of double stage elastic mounting system with complicated damped foundation structure like common-bed or raft in ships foundation structure model which has complicated damped sandwich cross-section is analyzed first. And then vibration responses experimental results and shock response of double stage elastic mounting system with complicated damped foundation structure like common-bed or raft in ships foundation structure model which adopts the above damped structure as intermediate foundation were compared. As a result it is found that F.E.M could be effectively used in analyzing the vibration and shock response of double and multi-stage elastic mounting system with complicated damped foundation structures.

  • PDF

A Study on The Settlement Behavior of Foundations for Light-weight Structures on Clay Deposits (연약지반에서 경량구조물 기초의 침하거동에 관한 연구)

  • Lee, Kwang-Yeol;Chung, Chin-Gyo;Yun, Sung-Tae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.692-700
    • /
    • 2007
  • There are several types of foundations for light-weight structures, such as low story buildings, on soft clay deposits. Those foundations, such as piled raft, compensated foundation, mat foundation, floating foundation are commonly used rather then end-bearing piles to get more benefits on the construction and cost savings. In this study, settlement behaviors are computed and compared for several types of foundations on soft clay deposits. Also, theoretical expressions of parameters for piled raft system were provided with co-relations for design purposes. The predictions of settlements of piled rafts foundation are proposed based on the pile dimensions and design loads. From this study, the piled raft foundations is more benefits for reducing the settlement of clay deposits, and it is found that the piled raft system is applicable and effective on thick clay deposits, and that differential settlements of the foundation should be managed by designing the configuration of pile lengths.

  • PDF

Development of Automated Design Program for Electric Railway Pole Foundation (전철주기초 설계 자동화 프로그램 개발)

  • Kim, Jung-Moo;Chung, Won-Yong;Jeon, Yun-Bae;An, Seung-Hwa;Song, Kyu-Seok;Kim, Jong-Nam;Lee, Su-Hyung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.692-697
    • /
    • 2010
  • In this paper, a design program for electric railway pole foundation was developed by applying the estimation study performed by Korean Railway. There are two kinds of shapes in the cross-section of electric railway pole foundation: rectangle and circle. In foundation designing, The rectangular foundation should be satisfied with vertical, horizontal and moment equilibrium equations. On the other hand, the circular foundation should be satisfied with horizontal and moment equilibrium equations. The design program was coded into MFC(Microsoft Foundation Class) by MS Visual C. The equation's roots in the program were obtained by Incremental Search method. Dialog and property sheet(Wizard Mode) input windows were selected for user-friendliness. The biggest advantage of this program is to find an optimum depth in a given section.

  • PDF

A Vibration Mode Analysis of Resilient Mounting System and Foundation Structure of Acoustic Enclosure using Finite Element Method (유한요소법을 이용한 음향차폐장치용 탄성마운트 시스템 및 받침대의 진동모드 해석)

  • 정우진;배수룡;함일배
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.493-501
    • /
    • 1999
  • The vibration modes of resilient mounting system and foundation structure which support diesel engine/generator set and acoustic enclosure walls play an important role in the vibration transmission process. So, it is necessary to perform vibration mode analysis of resilient mounting system and foundation structure. For some reasons, if the vibration modal analysis of resilient mounting system and foundation structure of acoustic enclosure could be simultaneously done by finite element method, it would be very efficient approach. In this paper, vibration modal analysis method using finite element method for multi stage mounting system having n d.o.f model was proposed. Vibration analysis of single and double stage resilient mounting system was performed to verify the validity of the proposed method. Also frequency response results were compared in case of rigid foundation model and finite element foundation model which was compared with experimental modal analysis results.

  • PDF

Piled-Raft Foundation on Soft Clay in Gimhae Area (연약점토지반 Piled-Raft 기초의 김해지역에서의 적용성)

  • 서영교
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.20-25
    • /
    • 2004
  • For the structural foundation above the soft clay layer conditions, the design charts are first presented for the evaluation of both bearing capacity and total settlement in the basic raft foundation system. wad settlement relationship curves are used to evaluate the ultimate soil bearing capacity. The total settlement is evaluated by applying various traditional factors into the ultimate bearing capacity. Then, the parametric studies are carried out for the piled-raft foundation system. In the numerical analysis, the elasto-pastic finite element model(Mohr-Coulomb model) is used to present the foundation response and design charts, which enable the determination of the raft size and pile length and spacing.