• 제목/요약/키워드: FNNS

검색결과 35건 처리시간 0.025초

유전자 알고리즘을 이용한 FNNs 기반 비선형공정시스템 모델의 최적화 (Optimization of Fuzzy Neural Network based Nonlinear Process System Model using Genetic Algorithm)

  • 최재호;오성권;안태천
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 춘계학술대회 학술발표 논문집
    • /
    • pp.267-270
    • /
    • 1997
  • In this paper, we proposed an optimazation method using Genetic Algorithm for nonlinear system modeling. Fuzzy Neural Network(FNNs) was used as basic model of nonlinear system. FNNs was fused of Fuzzy Inference which has linguistic property and Neural Network which has learning ability and high tolerence level. This paper, We used FNNs which was proposed by Yamakawa. The FNNs was composed Simple Inference and Error Back Propagation Algorithm. To obtain optimal model, parameter of membership function, learning rate and momentum coefficient of FNNs are tuned using genetic algorithm. And we used simplex algorithm additionaly to overcome limit of genetic algorithm. For the purpose of evaluation of proposed method, we applied proposed method to traffic choice process and waste water treatment process, and then obtained more precise model than other previous optimization methods and objective model.

  • PDF

FNNs 구현을 위한 새로운 학습 방안 (A New Learning Scheme for Implementation of FNNs)

  • 최명렬;조화현
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.118-121
    • /
    • 2000
  • 본 논문에서는 FNNs(feedforwad neural networks)구현을 위한 새로운 학습 방안을 제안하였다. 제안된 방식은 온 칩 학습이 가능하도록 FNNs와 학습회로 사이에 스위칭 회로를 추가하여 단일패턴과 다중패턴 학습이 가능하도록 구현하였다. 학습 회로는 MEBP(modified error back-propagation) 학습 규칙을 적용하였고 간단한 비선형 시냅스 회로를 이용하여 구현하였다. 제안된 방식은 표준 CMOS 공정으로 구현되었고, MOSIS AMI $1.5\mu\textrm{m}$공정 HSPICE 파라메터를 이용하여 그 동작을 검증하였다. 제안된 학습방안 및 비선형 회로는 향후 학습 기능을 가진 대규모의 FNNs 구현에 매우 적합하리라 예상된다.

  • PDF

HCM과 유전자 알고리즘에 기반한 확장된 다중 FNN 모델 설계 (Design of Extended Multi-FNNs model based on HCM and Genetic Algorithm)

  • 박호성;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.420-423
    • /
    • 2001
  • In this paper, the Multi-FNNs(Fuzzy-Neural Networks) architecture is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNNs architecture uses simplified inference and linear inference as fuzzy inference method and error back propagation algorithm as learning rules. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNNs according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNNs model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model we use the time series data for gas furnace and the NOx emission process data of gas turbine power plant.

  • PDF

A Design of Dynamically Simultaneous Search GA-based Fuzzy Neural Networks: Comparative Analysis and Interpretation

  • Park, Byoung-Jun;Kim, Wook-Dong;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.621-632
    • /
    • 2013
  • In this paper, we introduce advanced architectures of genetically-oriented Fuzzy Neural Networks (FNNs) based on fuzzy set and fuzzy relation and discuss a comprehensive design methodology. The proposed FNNs are based on 'if-then' rule-based networks with the extended structure of the premise and the consequence parts of the fuzzy rules. We consider two types of the FNNs topologies, called here FSNN and FRNN, depending upon the usage of inputs in the premise of fuzzy rules. Three different type of polynomials function (namely, constant, linear, and quadratic) are used to construct the consequence of the rules. In order to improve the accuracy of FNNs, the structure and the parameters are optimized by making use of genetic algorithms (GAs). We enhance the search capabilities of the GAs by introducing the dynamic variants of genetic optimization. It fully exploits the processing capabilities of the FNNs by supporting their structural and parametric optimization. To evaluate the performance of the proposed FNNs, we exploit a suite of several representative numerical examples and its experimental results are compared with those reported in the previous studies.

Contour Plots of Objective Functions for Feed-Forward Neural Networks

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • 제8권4호
    • /
    • pp.30-35
    • /
    • 2012
  • Error surfaces provide us with very important information for training of feed-forward neural networks (FNNs). In this paper, we draw the contour plots of various error or objective functions for training of FNNs. Firstly, when applying FNNs to classifications, the weakness of mean-squared error is explained with the viewpoint of error contour plot. And the classification figure of merit, mean log-square error, cross-entropy error, and n-th order extension of cross-entropy error objective functions are considered for the contour plots. Also, the recently proposed target node method is explained with the viewpoint of contour plot. Based on the contour plots, we can explain characteristics of various error or objective functions when training of FNNs proceeds.

최적 Type-2 퍼지신경회로망 설계와 응용 (The Design of Optimized Type-2 Fuzzy Neural Networks and Its Application)

  • 김길성;안인석;오성권
    • 전기학회논문지
    • /
    • 제58권8호
    • /
    • pp.1615-1623
    • /
    • 2009
  • In order to develop reliable on-site partial discharge (PD) pattern recognition algorithm, we introduce Type-2 Fuzzy Neural Networks (T2FNNs) optimized by means of Particle Swarm Optimization(PSO). T2FNNs exploit Type-2 fuzzy sets which have a characteristic of robustness in the diverse area of intelligence systems. Considering the on-site situation where it is not easy to obtain voltage phases to be used for PRPDA (Phase Resolved Partial Discharge Analysis), the PD data sets measured in the laboratory were artificially changed into data sets with shifted voltage phases and added noise in order to test the proposed algorithm. Also, the results obtained by the proposed algorithm were compared with that of conventional Neural Networks(NNs) as well as the existing Radial Basis Function Neural Networks (RBFNNs). The T2FNNs proposed in this study were appeared to have better performance when compared to conventional NNs and RBFNNs.

고속 탐색 방법에 의한 부호책 생성 알고리즘 (Codebook Generation Algorithm Using Fast Searching Method)

  • 김형철;조제황
    • 대한전자공학회논문지SP
    • /
    • 제41권4호
    • /
    • pp.63-67
    • /
    • 2004
  • 고속 부호책 생성 방법들로서 기존의 대표적인 기법들에는 PDS, FNNS, 그리고 FC가 있다. 본 논문에서는 코드북을 설계하기 위해 기존의 방법들을 통합한 FCNNPDS를 제안한다. 모의실험 결과 FCNNPDS의 계산양이 기존의 방법들보다 약40-95% 감소되는 것을 보인다. 그러나, 비교 계산은 벡터의 차원 k와 관계가 없으며, 이것은 비교의 계산양이 다른 계산들보다 훨씬 적어지는 이유이다. 그래서 FCNNPDS는 기존의 방법들보다 가장 좋은 방법이다.

Design of Generalized Predictive Controller for Chaotic Nonlinear Systems Using Fuzzy Neural Networks

  • Park, Jong-tae;Park, Jin-bae;Park, Yoon-ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.172.4-172
    • /
    • 2001
  • In this paper, the Generalized Predictive Control(GPC) method based on Fuzzy Neural Networks(FNNs) is presented for the control of chaotic nonlinear systems without precise mathematical models. In our method, FNNs is used as the predictor whose parameters are tuned by the error between the actual output of nonlinear chaotic system and that of FNNs model. The parameters of GPC controller are adjusted via the gradient descent method where the difference between the actual output and the reference signal is used as a control error. Finally, computer simulation on the representative continuous-time chaotic system(Duffing system) is presented to demonstrate the effectiveness of our chaos control method.

  • PDF

퍼지-뉴럴 네트워크 구조의 최적 동정 (Optimial Identification of Fuzzy-Neural Networks Structure)

  • 윤기찬;박춘성;안태천;오성권
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 춘계학술대회 학술발표 논문집
    • /
    • pp.99-102
    • /
    • 1998
  • 본 논문에서는 복잡하고 비선형적인 시스템의 최적 모델링을 우해서 지능형 퍼지-뉴럴네트워크의 최적 모델 구축을 위한 방법을 제안한다. 기본 모델은 퍼지 추론 시스템의 언어적인 규칙생성의 장점과 뉴럴 네트워크의 학습기능을 결합한 FNNs 모델을 사용한다. FNNs 모델의 퍼지 추론부는 간략추론이 사용되고, 학습은 요류 역전파 알고리즘을 사용하여 다른 모델들에 비해 학습속도가 빠르고 수렴능력이 우수하다. 그러나 기본 모델은 주어진 시스템에 대하여 퍼지 공간을 균등하게 분할하여 퍼지 소속을 정의한다. 이것은 비선형 시스템의 모델링에 있어어서 성능을 저하시켜 최적의 모델을 얻기가 어렵다. 논문에서는 주어진 데이터의 특성을 부여한 공간을 설정하기 위하여 클러스터링 알고리즘을 사용한다. 클러스터링 알고리즘은 주어진 시스템에 대하여 상호 연관성이 있는 데이터들끼리 특성을 나누어 몇 개의 클래스를 이룬다. 클러스터링 알고리즘을 사용하여 초기 FNNs 모델의 퍼지 공간을 나누고 소속함수를 정의한다. 또한, 최적화 기법중의 하나로 자연선택과 자연계의 유전자 메카니즘에 바탕을 둔 탐색 알고리즘인 유전자 알고리즘을 사용하여 주\ulcorner 진 모델에 대하여 최적화를 수행한다. 또한 본 연구에서는 학습 및 테스트 데이터의 성능 결과의 상호 균형을 얻기 위한 하중값을 가긴 성능지수가 제시된다.

  • PDF

학습기능을 내장한 신경회로망 모듈 칩 설계 (A Modular Design of a FNNs with Learning)

  • 최명렬;조화현
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.17-20
    • /
    • 2000
  • 본 논문에서는 간단한 비선형 시냅스 회로를 이용하여 온 칩 학습기능을 포함한 모듈 칩을 구현하였다. 학습 회로는 MEBP(modified error back-propagation) 학습 규칙을 적용하여 구현하였으며, 제안된 회로는 표준 CMOS 공정으로 구현되었고, MOSIS AMI $1.5\mu\textrm{m}$공정 HSPICE 파라메터를 이용하여 그 동작을 검증하였다. 구현된 모듈 칩은 온 칩 학습기능을 가진 확장 가능한 신경회로망 칩으로 대규모의 FNNs(feedforwad neural networks) 구현에 매우 적합하리라 예상된다.

  • PDF