• 제목/요약/키워드: FLUENT simulation

검색결과 317건 처리시간 0.02초

The Study of the Electroconductive Liquids Flow in a Conduction Magnetohydrodynamic Pump

  • Naceur, Sonia;Kadid, Fatima Zohra;Abdessemed, Rachid
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권5호
    • /
    • pp.252-256
    • /
    • 2016
  • This paper deals the study of a linear MHD pump solution used to eliminate and to avoid the dangers of the mercury appearing through pollution and contamination. The formulation of the magnetohydrodynamic phenomena is derived from Maxwell and Navier-Stokes equations are solved using the finite volume method. Simulation results highlight the performance of the pump such as the electromagnetic force, the velocity, and the pressure, the application of Ansys-Fluent software validation these results.

입구 유량변화에 따른 메가 집열기 지관의 유량분포특성에 대한 수치해석 (Numerical Study on the Flow Distribution Characteristics with Varying Inlet Flow-Rate in Mega Collector Risers)

  • 김휘동;백남춘
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.150-154
    • /
    • 2009
  • Flow distribution characteristics with varying inlet flow-rate in mega collector risers have been investigated, using commercial code FLUENT. The heat transfer in mega collector was not considered in this numerical study. Through the simulation, the following results were found. First, flow distribution characteristics in mega collector risers show the similar tendency in all cases. Secondly, with increased inlet flow-rate, flow distribution uniformity was getting worse.

  • PDF

Fluid-structure interaction simulation of a floating wave energy convertor with water-turbine driven power generation

  • Zullah, Mohammed Asid;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권8호
    • /
    • pp.710-720
    • /
    • 2016
  • The Floating Wave Energy Convertor (FWEC) mooring design has an important requirement associated with the fact that, for a wave energy converter, the mooring connections may interact with their oscillations, possibly modifying its energy absorption significantly. It is therefore important to investigate what might be the most suitable mooring design according to the converter specifications and take into account the demands placed on the moorings in order to assure their survivability. The objective of this study is to identify a computational fluid dynamics method for investigating the effects of coupling a wave energy device with a mooring system. Using the commercial software ANSYS AQWA and ANSYS FLUENT, a configuration was studied for different displacements from the equilibrium position, load demands on the moorings, and internal fluid motion. These results and findings form a basis for future efforts in computational model development, design refinement, and investigation of station keeping for FWEC units.

Funnel 설계 권고안 (Funnel Design Guidance)

  • 정왕조;조원호;강대열;김승혁
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2006년도 특별논문집
    • /
    • pp.59-64
    • /
    • 2006
  • Most important factor to consider funnel performance is exhaust gas temperature and exhaust gas concentration Electric equipments on the wheelhouse top affected exhaust gas temperature. So, it is important that electric equipments keep away from high temperature. Though exhaust gas concentration is not a regulation and restraint, the exhaust 9as can cause serious problems for the on-board air quality and result in irreversible damage to the ship and people. So, we pocus on the exhaust gas concentration also. When judge whether a measured concentration is acceptable or not, criteria based on the LTEL (Long Term Exposure Limit). In this paper, we carried out the smoke simulation study. For this analysis, we used FLUENT which is commercial CFD (Computational Fluid Dynamics) code.

  • PDF

TWO-DIMENSIONAL SIMULATION OF HYDROGEN IODIDE DECOMPOSITION REACTION USING FLUENT CODE FOR HYDROGEN PRODUCTION USING NUCLEAR TECHNOLOGY

  • CHOI, JUNG-SIK;SHIN, YOUNG-JOON;LEE, KI-YOUNG;CHOI, JAE-HYUK
    • Nuclear Engineering and Technology
    • /
    • 제47권4호
    • /
    • pp.424-433
    • /
    • 2015
  • The operating characteristics of hydrogen iodide (HI) decomposition for hydrogen production were investigated using the commercial computational fluid dynamics code, and various factors, such as hydrogen production, heat of reaction, and temperature distribution, were studied to compare device performance with that expected for device development. Hydrogen production increased with an increase of the surface-to-volume (STV) ratio. With an increase of hydrogen production, the reaction heat increased. The internal pressure and velocity of the HI decomposer were estimated through pressure drop and reducing velocity from the preheating zone. The mass of $H_2O$ was independent of the STV ratio, whereas that of HI decreased with increasing STV ratio.

자유수면을 포함한 수퍼요트 주위의 점성유동 해석 (Comparisons of Hydrodynamic Characteristics of Superyacht with Respect to the Variation of Hull Form)

  • 김태윤;현범수
    • 대한조선학회논문집
    • /
    • 제45권3호
    • /
    • pp.337-343
    • /
    • 2008
  • There are various hull types on the mid-size superyachts around $30\;{\sim}\;45m$. In any case, it is important to design the proper hull shape in viewpoint of the reduction of wave resistance, because small vessels such as superyachts are running at relatively higher Froude Number than other merchant ships. FLUENT with a VOF option was employed to investigate the flow fields around the superyachts having three-typical hull types: U-, V-types and catamaran. Overall performances including free surface flow were compared to figure out hydrodynamic characteristics of superyachy by numerical simulation.

3D CFD를 활용한 관통 래버린스 실의 회전체 동역학적 해석 (Rotordynamic Analysis of See-through-type Labyrinth Seal Using 3D CFD)

  • 하태웅
    • 한국유체기계학회 논문집
    • /
    • 제18권1호
    • /
    • pp.44-50
    • /
    • 2015
  • Labyrinth seals are commonly used in various kinds of turbomachinery to reduce leakage flow. In the present 3D CFD analysis of see-through-type labyrinth air seal, the methodology of determining leakage and rotordynamic coefficients is suggested with the relative coordinate system for steady-state simulation. The leakage flow and rotordynamic forces predicted by using different solvers and turbulent models of FLUENT are compared with the results of the existing bulk-flow analysis code LABYSEAL.FOR and experiment. The present CFD result of direct stiffness(K) shows only improvement in prediction. The results of leakage and rotordynamic coefficients as well as computing time are sensitive against the used solver and turbulent model.

단순화한 챔버에서 유체의 흐름과 온도분포 (Fluid Flow and Temperature Distribution in the Simplified Chamber)

  • 한현각
    • 한국산학기술학회논문지
    • /
    • 제6권4호
    • /
    • pp.302-308
    • /
    • 2005
  • 구조가 복잡한 챔버의 온도분포와 유속변화를 연구하였다. 압축성 혹은 비압축성 유체, 층류 혹은 난류의 유속변화를 모델링 할 수 있는 FLUENT 프로그램으로 모사실험을 하였다. 챔버의 구조는 매우 복잡하여 단순화한 구조를 표준 $\kappa-\varepsilon$ 모델과 RNG $\kappa-\varepsilon$ 난류 모델 모사 실험하였다. 평가지역의 온도편차가 적은 것이 중요하다. 본 연구에서 얻은 챔버 내부의 온도분포와 유속변화 자료를 챔버의 제어 알고리즘을 향상하는 제공하였다. 개선된 제어 알고리즘을 이용하여 실제계에 적용한 결과 평가지역의 온도편차가 매우 개선되었다.

  • PDF

Comparative study of CFD and 3D thermal-hydraulic system codes in predicting natural convection and thermal stratification phenomena in an experimental facility

  • Audrius Grazevicius;Anis Bousbia-Salah
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1555-1562
    • /
    • 2023
  • Natural circulation phenomena have been nowadays largely revisited aiming to investigate the performances of passive safety systems in carrying-out heat removal under accidental conditions. For this purpose, assessment studies using CFD (Computational Fluid Dynamics) and also 3D thermal-hydraulic system codes are considered at different levels of the design and safety demonstration issues. However, these tools have not being extensively validated for specific natural circulation flow regimes involving flow mixing, temperature stratification, flow recirculation and instabilities. In the present study, an experimental test case based on a small-scale pool test rig experiment performed by Korea Atomic Energy Research Institute, is considered for code-to-code and code-to-experimental data comparison. The test simulation is carried out using the FLUENT and the 3D thermal-hydraulic system CATHARE-2 codes. The objective is to evaluate and compare their prediction capabilities with respect to the test conditions of the experiment. It was observed that, notwithstanding their numerical and modelling differences, similar agreement results are obtained. Nevertheless, additional investigations efforts are still needed for a better representation of the considered phenomena.

원자로 내부유동 예측을 위한 상용 전산유체역학 소프트웨어 성능 비교 연구 (Comparative Study of Commercial CFD Software Performance for Prediction of Reactor Internal Flow)

  • 이공희;방영석;우승웅;김도형;강민구
    • 대한기계학회논문집B
    • /
    • 제37권12호
    • /
    • pp.1175-1183
    • /
    • 2013
  • 전산유체역학 소프트웨어의 일부 개발자 및 사용자는 최신 전산유체역학 소프트웨어가 최소한 단상 원자로 안전문제는 타당하게 해석할 수 있을 것으로 생각하지만 계산 결과에는 여전히 제한성 및 불확실도가 존재한다. 현재 한국원자력안전기술원에서는 규제관점에서 원자로 안전문제에 대한 상용 전산유체역학 소프트웨어의 성능평가를 수행하고 있다. 본 연구에서는 축소 APR+ 원자로 내부유동 해석시다공성 모델을 적용한 상용 전산유체역학 소프트웨어의 예측 성능을 평가하기 위해 ANSYS CFX R.14 및 FLUENT R.14 에 탑재된 수치모델을 이용하여 계산을 수행하였다. 결론적으로 전산유체역학 소프트웨어에 따라 축소 APR+ 원자로 내부유동 분포는 국부적으로 차이가 발생하였다. 비록 제한된 수의 측정치로 인해 상용 전산유체역학 소프트웨어간 예측성능을 평가하기에는 다소 한계가 있으나 CFX R.14 가 FLUENT R.14 에 비해 상대적으로 타당한 예측결과를 제시하였다. 한편 적용된 차분법의 차이로 인해 동일한 격자에 대해 FLUENT R.14 가 CFX R.14 에 비해 상대적으로 많은 계산 메모리를 필요로 하였다. 따라서 대용량 병렬 계산시 가용한 계산 자원에 적합한 전산유체역학 소프트웨어가 선정되어야 한다.