DOI QR코드

DOI QR Code

Comparative Study of Commercial CFD Software Performance for Prediction of Reactor Internal Flow

원자로 내부유동 예측을 위한 상용 전산유체역학 소프트웨어 성능 비교 연구

  • Lee, Gong Hee (Safety Analysis & Evaluation Dept., Korea Institute of Nuclear Safety) ;
  • Bang, Young Seok (Safety Analysis & Evaluation Dept., Korea Institute of Nuclear Safety) ;
  • Woo, Sweng Woong (Safety Analysis & Evaluation Dept., Korea Institute of Nuclear Safety) ;
  • Kim, Do Hyeong (Safety Analysis & Evaluation Dept., Korea Institute of Nuclear Safety) ;
  • Kang, Min Ku (Safety Analysis & Evaluation Dept., Korea Institute of Nuclear Safety)
  • 이공희 (한국원자력안전기술원 안전해석평가실) ;
  • 방영석 (한국원자력안전기술원 안전해석평가실) ;
  • 우승웅 (한국원자력안전기술원 안전해석평가실) ;
  • 김도형 (한국원자력안전기술원 안전해석평가실) ;
  • 강민구 (한국원자력안전기술원 안전해석평가실)
  • Received : 2013.05.14
  • Accepted : 2013.09.24
  • Published : 2013.12.01

Abstract

Even if some CFD software developers and its users think that a state-of-the-art CFD software can be used to reasonably solve at least single-phase nuclear reactor safety problems, there remain limitations and uncertainties in the calculation result. From a regulatory perspective, the Korea Institute of Nuclear Safety (KINS) is presently conducting the performance assessment of commercial CFD software for nuclear reactor safety problems. In this study, to examine the prediction performance of commercial CFD software with the porous model in the analysis of the scale-down APR (Advanced Power Reactor Plus) internal flow, a simulation was conducted with the on-board numerical models in ANSYS CFX R.14 and FLUENT R.14. It was concluded that depending on the CFD software, the internal flow distribution of the scale-down APR was locally somewhat different. Although there was a limitation in estimating the prediction performance of the commercial CFD software owing to the limited amount of measured data, CFX R.14 showed more reasonable prediction results in comparison with FLUENT R.14. Meanwhile, owing to the difference in discretization methodology, FLUENT R.14 required more computational memory than CFX R.14 for the same grid system. Therefore, the CFD software suitable to the available computational resource should be selected for massively parallel computations.

전산유체역학 소프트웨어의 일부 개발자 및 사용자는 최신 전산유체역학 소프트웨어가 최소한 단상 원자로 안전문제는 타당하게 해석할 수 있을 것으로 생각하지만 계산 결과에는 여전히 제한성 및 불확실도가 존재한다. 현재 한국원자력안전기술원에서는 규제관점에서 원자로 안전문제에 대한 상용 전산유체역학 소프트웨어의 성능평가를 수행하고 있다. 본 연구에서는 축소 APR+ 원자로 내부유동 해석시다공성 모델을 적용한 상용 전산유체역학 소프트웨어의 예측 성능을 평가하기 위해 ANSYS CFX R.14 및 FLUENT R.14 에 탑재된 수치모델을 이용하여 계산을 수행하였다. 결론적으로 전산유체역학 소프트웨어에 따라 축소 APR+ 원자로 내부유동 분포는 국부적으로 차이가 발생하였다. 비록 제한된 수의 측정치로 인해 상용 전산유체역학 소프트웨어간 예측성능을 평가하기에는 다소 한계가 있으나 CFX R.14 가 FLUENT R.14 에 비해 상대적으로 타당한 예측결과를 제시하였다. 한편 적용된 차분법의 차이로 인해 동일한 격자에 대해 FLUENT R.14 가 CFX R.14 에 비해 상대적으로 많은 계산 메모리를 필요로 하였다. 따라서 대용량 병렬 계산시 가용한 계산 자원에 적합한 전산유체역학 소프트웨어가 선정되어야 한다.

Keywords

References

  1. Euh, D. J., Kim, K. H., Youn, J. H., Bae, J. H., Chu, I. C., Kim, J. T., Kang, H. S., Choi, H. S., Lee, S. T. and Kwon, T. S., 2012, "A Flow and Pressure Distribution of APR+ Reactor Under the 4-Pump Running Conditions with a Balanced Flow Rate," Nuclear Engineering and Technology, Vol. 44, pp. 735-744. https://doi.org/10.5516/NET.02.2012.715
  2. Lee, K. B., Im, I. Y., Lee, B. J. and Kuh, J. E., 1991, "YGN 3&4 Reactor Flow Model Test," Journal of the Korean Nuclear Society, Vol. 23, pp. 340-351.
  3. Rohde, U., Hohne, T., Kliem, S., Hemstrom, B., Scheuerer, M., Toppila, T., Aszodi, A., Boros, I., Farkas, I., Muhlbauer, P., Vyskocil, L., Klepac, J., Remis, J. and Duryi, T., 2007, "Fluid Mixing and Flow Distribution in a Primary Circuit of a Nuclear Pressurized Water Reactor-Validation of CFD Codes," Nuclear Engineering and Design, Vol. 237, pp. 1639-1655. https://doi.org/10.1016/j.nucengdes.2007.03.015
  4. Menter, F., 2001, "CFD Best Practice Guidelines for CFD Code Validation for Reactor Safety Applications," ECORA CONTRACT $N^{\circ}$ FIKS-CT- 2001-00154.
  5. ANSYS CFX, Release 14.0, ANSYS Inc.
  6. FLUENT, Release 14.0, ANSYS Inc.
  7. ANSYS CFX-Solver Modeling Guide, 2011, ANSYS Inc.
  8. Lee, G. H., Bang, Y. S. and Woo, S. W., 2013, "Numerical Analysis of Turbulent Flow around a Tube Bundle by Applying CFD Best Practice Guideline," Trans. Korean Soc. Mech. Eng. B, Vol. 37, No. 10, (approval of the publication). https://doi.org/10.3795/KSME-B.2013.37.10.961
  9. Lee, G. H., Bang, Y. S., Woo, S. W., Kim, D. H. and Kang, M. G., 2013, "Performance Assessment of Turbulence Models for the Prediction of the Reactor Internal Flow in the Scale-down APR+," Transactions of the Korean Nuclear Society Spring Meeting, Gwangju, Korea.
  10. Lee, G. H., Bang, Y. S., Woo, S. W., Cheong, A. J., Kim, D. H. and Kang, M. G., 2013, "A Numerical Study for the Effect of Flow Skirt Geometry on Reactor Internal Flow," Annals of Nuclear Energy, Vol. 62, pp. 452-462. https://doi.org/10.1016/j.anucene.2013.07.005
  11. Lee, B. J., Jang, H. C., Cheong, J. S., Baek, S. J. and Park, Y. S., 2001, "A Review on the Regionalization Methodology for Core Inlet Flow Distribution Map," Journal of the Korean Nuclear Society, Vol. 33, pp. 441-456.
  12. Lee, G. H., Bang, Y. S., Woo, S. W., Kim, D. H. and Kang, M. G., 2013, "CFD Simulation of Reactor Internal Flow in the Scaled APR+," Journal of Energy and Power Engineering, Vol. 7, pp. 1533-1538.
  13. Lee, G. H., Bang, Y. S., Woo, S. W., Kim, D. H. and Kang, M. G., 2013, "Numerical Analysis of the Internal Flow Distribution in Scale-Down APR+," Trans. Korean Soc. Mech. Eng. B, Vol. 37, No. 9, pp. 863-870. https://doi.org/10.3795/KSME-B.2013.37.9.855
  14. Lee, G. H., Bang, Y. S. and Woo, S. W., 2012, "Performance Assessment of Turbulence Models for the Prediction of Moderator Thermal Flow inside CANDU Calandria," Trans. Korean Soc. Mech. Eng. B, Vol. 36, No. 3, pp. 363-369. https://doi.org/10.3795/KSME-B.2012.36.3.363

Cited by

  1. Numerical Study on the Effect of Reactor Internal Structure Geometry Treatment Method on the Prediction Accuracy for Scale-down APR+ Flow Distribution vol.38, pp.3, 2014, https://doi.org/10.3795/KSME-B.2014.38.3.271