• Title/Summary/Keyword: FIR filter design

Search Result 172, Processing Time 0.033 seconds

A Design Method for Third-Band FIR Filters of Equi-Ripple Passband (균일 리플 통과대역 응답을 갖는 1/3 밴드 FIR 필터의 설계)

  • Moon Dong-Wook;Kim Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.9
    • /
    • pp.570-576
    • /
    • 2005
  • In FIR (Finite Impulse Response) filter applications, Nth-band FIR digital filters are known to be important due to their reduced computational requirements. The conventional methods for designing FIR filters use iterative approaches such as the well-known Parks-Mcclellan algorithm. the Parks-Mcclellan algorithm is also used to design Nth-band FIR digital filters. But a disadvantage of the Parks-McClellan algorithm Is that it needs a good amount of design time. This paper describes a direct design method for third-band FIR Filters using Chebyshev polynomial, which provide a reduction in design time over indirect methods such as the Parks-McClellan algorithm. The response of the resulting filter is equi-ripple in passband. The proposed method of design produces a passband response that is equi-ripple to within a minuscule error, compare to that of the Parks-McClellan algorithm.

Design of GHz Analog FIR Filter based on a Distributed Amplifier (분산증폭기 기반 GHz 대역 아날로그 FIR 필터 설계)

  • Yeo, Hyeop-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1753-1758
    • /
    • 2012
  • This paper introduces analog FIR filters based on a distributed amplifier and analyzes the proposed filter's characteristics. A simple design method of an analog FIR filter based on the digital filter design technique is also introduced. The proposed analog FIR filters are a moving average(MA) and a comb type filters with no multiplier. This simple structures of the proposed filters may enable to operate at multi-GHz frequency range and applicable to combine a filter and an amplifier of RF system. The proposed analog FIR filters were implemented with standard $0.18{\mu}m$ CMOS technology. The designed GHz analog FIR filters are simulated by Cadence Spectre and compared to the results of digital FIR filters obtained from MATLAB simulations. From the simulation results, the characteristics of the proposed analog FIR filters are fairly well matched with those of digital FIR filters.

Design of 5GHz FIR filter LNA based on a Distribute Amplifier (분산증폭기 기반 5GHz FIR 필터 LNA 설계)

  • Yeo, Hyeopgoo;Jung, Seung-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.842-844
    • /
    • 2012
  • This paper introduces a 5GHz FIR filter low noise amplifier (LNA) based on a distributed amplifier and analyzes the its characteristics. The proposed FIR filter-LNA has the MA(moving average) filter characteristic which improves the frequency selectivity of the amplifier. Proto-type circuits with FR4 and ${\varepsilon}_r=10.2$ PCB have been realized and simulated using ADS (Advanced Design System). The simulation results verified that the designed LNA had a gain of about 10dB and the frequency characteristic of the MA FIR filter. It is expected that the proposed FIR filter LNA can be applicable to the various applications using an amplifier and a filter in RF systems.

  • PDF

An Analytical Approach for Design of Nth-band FIR Digital Filters with Equi-Ripple Passband

  • Moon, Dong-Wook;Kim, Lark-Kyo;Lim, Cheng-Chew
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.423-428
    • /
    • 2009
  • In FIR (Finite Impulse Response) filter applications, Nth-band FIR digital filters are known to be important due to their reduced computational requirements. The conventional methods for designing FIR filters use iterative approaches such as the well-known Parks-McClellan algorithm. The Parks-McClellan algorithm is also used to design Nth-band FIR digital filters after Mintzer's research. However, a disadvantage of the Parks-McClellan algorithm is that it needs a large amount of design time. This paper describes a direct design method for Nth-band FIR Filters using Chebyshev polynomials, which provides a reduced design time over indirect methods such as the Parks-McClellan algorithm. The response of the resulting filter is equi-ripple in passband. Our proposed method produces a passband response that is equi-ripple to within a minuscule error, comparable to that of Mintzer's design method which uses the Parks-McClellan algorithm.

Reconfigurable FIR Filter for Dynamic Variation of Filter Order and Filter Coefficients

  • Meher, Pramod Kumar;Park, Sang Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.261-273
    • /
    • 2016
  • Reconfigurable finite impulse response (FIR) filters whose filter coefficients and filter order change dynamically during run-time play an important role in the software defined radio (SDR) systems, multi-channel filters, and digital up/down converters. However, there are not many reports on such reconfigurable designs which can support dynamic variation of filter order and filter coefficients. The purpose of this paper is to provide an architectural solution for the FIR filters to support run-time variation of the filter order and filter coefficients. First, two straightforward designs, namely, (i) single-MAC based design and (ii) full-parallel design are presented. For large variation of the filter order, two designs based on (iii) folded structure and (iv) fast FIR algorithm are presented. Finally, we propose (v) high throughput design which provides significant advantage in terms of hardware and/or time complexities over the other designs. We compare complexities of all the five structures, and provide the synthesis results for verification.

A Design Method of Linear Phase FIR filters with MAXFLAT and MAXSHCUT frequency characteristics (MAXFLAT와 MAXSHCUT 주파수 특성을 갖는 선형 위상 FIR 필터 설계)

  • Jeon, Joon-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.3
    • /
    • pp.105-112
    • /
    • 2007
  • In general, the earlier methods for the design of MAXFLAT FIR filters have existent problems due to the approximation algorithms used to approach MAXFLAT(maximally flat) response in the passband and the stopband.. The proposed approach advanced by using of MAXSHCUT(maximally sharp cutoff) condition in this paper clearly overcomes these problems. In this approach, we use a key parameter represented with filter-order and cutoff-frequency parameters for obtaining the lowpass filters with the MAXFLAT and MAXSHCUT characteristics in the frequency domain. Consequently, this design technique leads to new MAXFLAT and MAXSHCUT FIR digital filter, which can achieve sharp-cutoff responses with the stopband attenuation exceeding 100 dB almost everywhere.

Analysis and Design of Nth-band FIR Filters with Equi-Ripple Passband Response (Nth 밴드 FIR 필터의 균일 리플 통과 대역 응답을 위한 해석과 설계)

  • Moon, Dong-Wook;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.10
    • /
    • pp.630-638
    • /
    • 2005
  • In FIR (Finite Impulse Response) filter applications, Nth-band F]U digital filters are known to be important due to their reduced computational requirements. The conventional methods for designing F]U filters use iterative approaches such as the well-known Parks-Mcclellan algorithm. The Parks-Mcclellan algorithm is also used to design Nth-band FIR digital filters. But a disadvantage of the Parks-Mcclellan algorithm is that it needs a good amount of design time. This paper describes a direct design method for Nth-band FIR Filters using Chebyshev polynomials, which provides a reduced design time over indirect methods such as the Parks-Mcclellan algorithm. The response of the resulting filter is equiripple in passband. Our proposed method produces a passband response that is equripple to within a minuscule error, comparable to that of the Parks-Mcclellan algorithm.

Compressive Sensing of the FIR Filter Coefficients for Multiplierless Implementation (무곱셈 구현을 위한 FIR 필터 계수의 압축 센싱)

  • Kim, Seehyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2375-2381
    • /
    • 2014
  • In case the coefficient set of an FIR filter is represented in the canonic signed digit (CSD) format with a few nonzero digits, it is possible to implement high data rate digital filters with low hardware cost. Designing an FIR filter with CSD format coefficients, whose number of nonzero signed digits is minimal, is equivalent to finding sparse nonzero signed digits in the coefficient set of the filter which satisfies the target frequency response with minimal maximum error. In this paper, a compressive sensing based CSD coefficient FIR filter design algorithm is proposed for multiplierless and high speed implementation. Design examples show that multiplierless FIR filters can be designed using less than two additions per tap on average with approximate frequency response to the target, which are suitable for high speed filtering applications.

A Study on an Performance Improvement of FIR Digital Filter using Window Function Design Method (창함수 설계 기법을 이용한 FIR 디지털 필터의 성능 향상에 관한 연구)

  • Lee, Kyung-Hyo;Bae, Sang-Bum;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.351-354
    • /
    • 2007
  • In recent years, digital processing techniques have been applied diversity of fields. Typical signal processing techniques are speech processing and image processing. And filters for the signal processing can be divided in FIR (finite impulse response) filter and IIR (infinite impulse response) filter. Compared with IIR filter, the FIR Filter has a defect of high-degree, but has a merit of stability and uses simply. Futhermore, FIR filter also has linear phase response characteristics, it is using in fields regarding wave information importantly. To FIR Filter design, the main issue is to remove the Gibbs phenomenon. Therefore, in this paper I was proposed a method using FIR digital filter applied a modified window function and the method was compared with conventional methods.

  • PDF

A Study on QP Method and Two Dimensional FIR Elliptic Filter Design with McClellan Transform (QP 방법과 McClellan 변환을 이용한 2차원 FIR Elliptic 필터 설계에 관한 연구)

  • 김남수;이상준;김남호
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.268-271
    • /
    • 2003
  • There are several methods for the design of 2D filter. Notable among them is McClellan transform method. This transform allows us to obtain a high order 2D FIR filter through mapping the 1D frequency points of a 1D prototype FIR filter onto 2D frequency contours. We design 2D filter using this transform. Then we notice for mapping deviation of the 2D filter. In this paper, Quadratic programming (QP) method allows us to obtain coefficients of McClellan transform. Then we compare deviation of QP method with least-squares(LS) method. Elliptic filter is used for comparison. The optimal cutoff frequencies of a 1D filter are obtained directly from the QP method. Also several problem of LS method are solved.

  • PDF