• Title/Summary/Keyword: FEM dynamic analysis

Search Result 636, Processing Time 0.032 seconds

FEM Analysis and Dynamic Characteristics of Hydraulic Pump Assembly Components for Aircraft (항공기용 유압 펌프 부품의 동적특성 및 유한 요소 분석)

  • Kim, H.E.;Han, S.G.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.5-11
    • /
    • 2012
  • In this paper, the numerical analysis is introduced to predict the dynamic characteristics of piston pump assembly components in hydraulic piston pump for aircraft. Rotating cylinder block and reciprocating pistons are modelled kinematically. Furthermore, leakage flow and torque losses between the boundary surfaces of components are analyzed. This analysis has been carried out through the commercial CASPAR program. The simulations for stress on pump assembly components using the dynamic analysis model are performed using the ANSYS 11 program. Such dynamic characteristics and stress simulation procedures will be carried out repeatedly for the optimized design.

Analysis on Dynamic Characteristic and Circuit Parameter of Linear Switched Reluctance Motor by Electromagnetic Analytical Method (전자기 해석법에 의한 직선형 스위치드 릴럭턴스 전동기의 회로정수 도출 및 동특성 해석)

  • Park, Ji-Hoon;Ko, Kyoung-Jin;Choi, Jang-Young;Jang, Seok-Myeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.318-327
    • /
    • 2010
  • This paper deals with analysis on dynamic characteristic and circuit parameter of linear switched reluctance motor by electromagnetic analytical method. Above all, using space harmonic method, which is electromagnetic method, the air-gap flux density is analyzed in the both align and unaign positions, and the inductance profile, force characteristic and resistance per phase are calculated by means of the process. The validity of the analyzed results are demonstrated by the finite element method(FEM) and manufacture of the prototype machine. Second, the dynamic simulation is analyzed by the use of circuit parameters derived from analytical method, and the operating system of the prototype machine is manufactured to demonstrated the validity of simulation analysis. As a result, it is considered that the characteristic equation suggested in this paper will contribute to the design, analysis and application of LSRM.

Development of a Leaf Spring Moleling Method for Dynamic Analysis of a Mini-Bus (소형버스의 동역학 해석을 위한 판스프링 모델링기법 개발)

  • Park, T.W.;Yim, H.J.;Lee, G.H.;Park, C.J.;Jeong, I.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.1-6
    • /
    • 1998
  • A leaf spring plays an important role in a passenger bus. Since characteristic of a leaf spring has a hysteresis behaviour, modeling technique for a leaf spring is an important issue for passenger bus analysis. In this paper, modeling technique for a leaf spring is presented. First, non-linear FEM model of a leaf spring is constructed then it is used to make an approximated model to be used in dynamic analysis. The modeling procedure is ex-plained in step by step approach. Then, this model is applied to dynamic analysis of a mini-bus with flexible body and non-linear dynamic force element. The results are compared with test data.

  • PDF

Dynamic Analysis on the Double Bill Detector of ATM (ATM 2매검지부의 동적해석)

  • Suh, Jun-Ho;Baek, Yoon-kil;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.848-851
    • /
    • 2005
  • ATM(Automated-feller Machine) is a machine that receives and pays money directly. The double bill detector (DBD) module of an ATM detects double bill from its thickness. In this paper, the dynamic behavior of the DBD was analyzed numerically and experimentally. The moment of inertia of the double bill lever and the spring constant were measured respectively. And the displacements of the ]ever was measured experimentally. The measured dynamic behaviors were simulated numerically using vector equation. Through the analysis, the design factors were found to make a fast and reliable new ATM machine.

  • PDF

A Modeling and Contact Force Analysis of the Catenary-pantograph System for a High-speed Rail Vehicle (고속 전철용 가선-팬터그래프 시스템의 모델링 및 접촉력 해석)

  • 김진우;박인기;장진희;왕영용;한창수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.6
    • /
    • pp.474-483
    • /
    • 2003
  • In this study, the dynamic characteristics of a catenary system and pantograph supplying electrical power to high-speed trains are investigated. One of the most important issues accompanied by increasing the speed of high-speed rail is stabilization of current collection. To stabilize current collection, it is necessary the contact force between the catenary and the pantograph to be kept continuous without loss of contact. The analytical model of a catenary and a pantograph is constructed to simulate the behavior of an actual system. The analysis of the catenary based on the Finite Element Method (FEM) is performed to develop a catenary model suitable for high speed operation. The reliability of the models is verified by the comparison of the excitation test with Fast Fourier Transform (FFT) data of the actual system. The static deflection of the catenary, stiffness variation in contact lines, dynamic response of the catenary undergoing constant moving load, contact force, and each state of the pantograph model were calculated. It is confirmed that a catenary and pantograph model are necessary for studying the dynamic behavior of the pantograph system.

Improving the Dynamic Characteristics of the Pantograph Using the Sensitivity Analysis (동적 민감도 해석을 이용한 판토그래프의 동특성 개선)

  • Kim, Jin-Woo;Park, Tong-Jin;Wang, Young-Yong;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.679-685
    • /
    • 2001
  • In this paper, the dynamic response of the pantograph system that supplies electrical power to a high-speed rail vehicle were investigated. The analysis of the catenary based on the Finite Element Method (FEM) is executed to develop a pantograph fits well in high-speed focused on the dynamic characteristic analysis of the pantograph system. By simulation of the pantograph-catenary system, the static deflection of the catenary, the stiffness variation in contact lines, the dynamic response of the catenary undergoing constant moving load and the contact force analysis were executed. In order to consider the design variables that effects on the dynamic characteristic of the pantograph system performed the dynamic sensitivity analysis. From the pantograph-catenary analysis, the design parameters of a pantograph could be improved. From the results of the sensitivity analysis, a pantograph with improved parameters is suitable for a high-speed rail vehicle from the design-parameter analysis.

  • PDF

Dynamic Model for Compliant Mechanism with Long Flexure Hinges (긴 유연힌지를 갖는 컴플라이언스 메커니즘의 동역학 모델)

  • Choi Kee-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.61-67
    • /
    • 2005
  • A dynamic model for flexure hinge-based compliant mechanisms is derived. The dynamic model of the previous works do not well describe the behaviors of rigid bodies in the compliant mechanism when the length of the flexure hinge is long. In this study, the effect on the length of the flexure hinge is pointed out and then the dynamic model is derived to overcome the length effect. For verification, modal analyses are carried out using the proposed dynamic model and FEM (Finite Element Method). Finally they are compared by the terms of modal frequency. As the result, the proposed dynamic model can be used in design and analysis of the compliant mechanism.

Analysis on the Squeal Noise of Wheel Brake System for Tilting Train (틸팅차량용 휠 제동장치의 스퀼 소음 해석)

  • Cha, Jung-Kwon;Park, Yeong-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.98-105
    • /
    • 2010
  • Squeal, a kind of self-excited vibration, is generated by the friction between the disc and the friction materials. It occurs at the ending stage of the braking process, and radiates and audible frequency range of 1 kHz to 10 kHz. Squeal is generated from unstability because of the coupling between the translation and rotation of the system. This instability is caused by the follower force and follower force is normal component of the friction force. In this paper modal analysis of wheel brake system was performed in order to predict the squeal phenomenon. It was shown that the prediction of system instability is possible by FEM. A finite element model of that brake system was made. Some parts of a real brake was selected and modeled. Modal analysis method performs analyses of each brake system component. Experimental modal analysis was performed for each brake components and experimental results were compared with analytical results from FEM. To predict the dynamic unstability of a whole system, the complex eigenvalue analysis for assembly modeling of components confirmed by modal analysis is performed. The finite element models of the disk brake assembly have been constructed, and the squeal noise problems have been solved by complex eigenvalue analysis. The complex eigenvalue analysis results compared with real train test.

The Study of Dynamic Instability of Supercavitating Shell Structures (초공동 운동체 구조물의 동적 불안정성 연구)

  • Kim, Seung-Jo;Byun, Wan-Il;Jang, Chae-Kyu;Cho, Jin-Yeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.469-471
    • /
    • 2010
  • Supercavitating vehicles which cruise under water undergo high longitudinal force caused by thrust and drag. These combination may cause structural buckling. Static and dynamic buckling analysis method by using FEM can be used to predict this structural failure behavior. In this paper, some principles which include method for solution eigenvalue problem for buckling analysis are introduced. And before buckling analysis, we predicted some mode shape and natural frequency of cylindrical shell by using DIAMOND/IPSAP eigen-solver.

  • PDF

Stress Analysis and Shape Optimization of Dynamic Locking Tongue (DLT) Using FEM (FEM을 이용한 Dynamic Locking Tongue(DLT)의 강도 해석 및 형상 최적화)

  • Choi, Ji-Hun;Park, Tae-Won;Lee, Jin-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.699-705
    • /
    • 2012
  • The role of a seat belt in a vehicle is to protect the driver from injury when a crash occurs. However when a large crash occurs, the driver slips forward and receives a strong impact. To prevent this situation, improvement of seat belts is essential. In this study, the new concept of a dynamic locking tongue (DLT) for seat belts is developed. The DLT device is used to reduce the impact to the driver's chest by tightening the webbing, so the driver is protected from severe injury in a large crash. First, a finite element model of the DLT device is created using SAMCEF and structural analysis is conducted with boundary conditions similar to those found in experiments. Then, the stress in the DLT device can be calculated. Second, the shape of the DLT device is optimized using the response surface analysis method in order to minimize the stress and weight. The validity of the optimization of the DLT device is verified using structural analysis.