• Title/Summary/Keyword: FE strength analysis

Search Result 541, Processing Time 0.03 seconds

Evaluation of Timependent Creep and Shrinkage of CIP Section in Asymmetric PSC Box Girder for Railroad Bridge (철도교용 비대칭 거더의 현장 타설부에서 나타나는 시간에 따른 크립 및 건조수축 평가)

  • Jung, Chi-Young;Park, Seung-Min;Ahn, Jin-Hee;Kim, Sang-Hyo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.973-978
    • /
    • 2011
  • In this study, effects due to differences of creep and shrinkage which is caused by material differences such as concrete characteristic and age in an asymmetric PSC box girder were evaluated. For this purpose the prestress distribution, creep and shrinkage were analyzed with the FE analysis program, LUSAS 14.3. As a result of the prestress, the stress distribution was stable. In case of the analysis result which was conducted with 1,000 days response time, the shear stress between PC section and CIP section is satisfied with design shear strength.

  • PDF

Review for C/H Bulkhead Stringer with Opening (6,500 TEU Container 선박의 Opening을 고려한 Cargo Hold Bulkhead Stringer 구조의 Strength 검토)

  • Ha, Ji-Hyung;Park, Dong-Kun;Kim, Bo-Eun;Jeon, Ji-Yoon
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.52-58
    • /
    • 2009
  • Openings for access to cargo holds are cut on horizontal stringers in every bulkhead of container carriers. But, they are positioned at the edge of stringer width to make minimum space for access and these openings are required to be stiffened by owners and classifications respectively. In this paper, the cargo hold bulkhead stringers with openings for 6,500 TUE container carriers were reviewed by FE analysis to be conducted with the results of hold analysis for 6,500 TUE container carriers classed to GL, DNV, LR and BV respectively, and purpose of this paper is to establish yard's standard of the reinforcement for these openings.

  • PDF

Analysis of Notched Bar Tensile Tests for Inconel 617 at Room and Elevated Temperatures (Inconel 617 노치시편의 상온 및 고온 인장실험 해석)

  • Oh, Chang-Sik;Ma, Young-Wha;Yoon, Kee-Bong;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1818-1823
    • /
    • 2007
  • In this paper, notched bar tensile tests of Inconel 617 were performed at room ($20^{\circ}C$) and elevated ($800^{\circ}C$) temperature. Finite element analyses are also performed. It is found that, at the room temperature, smooth bar tensile test results could be used to simulate notched bar tensile tests. However, at the elevated temperature, notched bar tensile test results can not be simulated from smooth bar tensile test results. Metallurgical examination reveals that strength weakening results from many cavities over the specimens for smooth bar test at the elevated temperature. "True" tensile properties at the elevated temperature is found using FE simulations. It also suggests that cautious should be taken to determine tensile properties of Inconel 617 at elevated temperatures using smooth bar tests.

  • PDF

3- D Analysis of Concrete Slab Track System (콘크리트 슬래브 궤도의 3차원 거동해석)

  • Kim, Jeong-Il;Jang, Seung-Yup
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.955-960
    • /
    • 2004
  • In this study, three dimensional FE analysis of concrete slab track has been performed in order to develop the realistic design of precast concrete slab track. The precast slab track system including the precast concrete slab panel and the grout layer is modeled using the three dimensional solid element with crack softening effect. The input load is computed from the one dimensional beam element model constituting the rail and several discrete springs. To investigate the effect of the longitudinal connection of slab panels, two different systems-continuous and discrete systems - are modeled. The analytical results show that the stresses of both the slab panel and the grout layer are in the range of linear elastic, and, at the interface between two adjacent panels, the primary stresses of the grout layer of the discrete system are higher than those of the continuous system. However, The overall stress levels of the grout layer are very low relative to the strength of th grout.

  • PDF

DYNAMICAL CHARACTERISTICS OF SUNSPOT CHROMOSPHERES I. ANALYSIS OF CIRCULAR POLARIZATION MEASURED FROM A SUNSPOT

  • KIL HYO SUB;YUN HONG SIK
    • Journal of The Korean Astronomical Society
    • /
    • v.26 no.2
    • /
    • pp.103-114
    • /
    • 1993
  • We have analyzed a set of high resolution photographic line profiles of a Zeeman sensitive Fe I $\lambda$ 6302.5 line taken with the Universal Birefringent Filter over a single round sunspot (SPO 5007) at the Sacramento Peak Solar Observatory. The observed spectra recorded on films are traced by PDS and the traced densities are converted to relative intensity by means of IRAF. The Stokes I and V profiles are then constructed by adding together and subtracting from each other the left and right handed circular polarizations, respectively. The reduced I and V profiles are analyzed by means of the coarse analysis(Auer et al.(1977), Skumanich and Lites(1987)) with the use of inversion technique. It is found that the umbral field strength is about 3000 gauss and the field distribution follows closely the emperical model proposed by Wittmann(1974).

  • PDF

Evaluation of Design Parameters for Optimizing the Cooling Channel in Hot Press Bending Process (핫 프레스 벤딩 공정에서 냉각회로 최적화를 위한 공정변수의 평가)

  • Nam, Ki-Ju;Choi, Hong-Seok;Ko, Dae-Cheol;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1267-1273
    • /
    • 2009
  • Hot press forming can produce high-strength components by rapidly cooling between closed punch and die after hot forming using quenchable boron steel austenized in a furnace. In the hot press forming process, the cooling rate is influenced by the size, position and arrangement of the cooling channel and the file condition of cooling water in the die. Also, mechanical properties of the final components and operation time are related to cooling rate. Therefore, the design of optimized cooling channel is one of the most important works. In this paper, the effect of position and size of the cooling channel on the cooling rate was investigated by using design of experiment and FE analysis in hot press bending process. Therefore the optimum cooling channel ratio was presented in the HPB.

Nominally Equivalent Powders for P/M Steels: Analysis of Response to Sintering and Differences at Various C Content

  • Bocchini, G. F.;Ienco, M. G.;Pinasco, M. R.;Stagno, E.;Baggioli, A.;Gerosa, R.;Rivolta, B.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.405-406
    • /
    • 2006
  • Raw materials from different sources, produced by a given process and having equal chemical composition, are supposed to be equivalent. The differences in sintering behavior have been investigated on P/M steels obtained from four diffusion-bonded powders (Fe + Ni + Cu + Mo) on atomized iron base, at the same alloy contents. Two levels of carbon and two sintering conditions have been investigated. Dimensional changes, C content, hardness, microhardness pattern, universal hardness, fractal analysis, pore features, microstructure features, and rupture strength have been compared to characterize different raw materials. The results show that the claimed equivalence is not confirmed by experimental data.

  • PDF

A study on collision strength assessment of a jack-up rig with attendant vessel

  • Ma, Kuk Yeol;Kim, Jeong Hwan;Park, Joo Shin;Lee, Jae Myung;Seo, Jung Kwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.241-257
    • /
    • 2020
  • The rapid proliferation of oil/gas drilling and wind turbine installations with jack-up rig-formed structures increases structural safety requirements, due to the greater risks of operational collisions during use of these structures. Therefore, current industrial practices and regulations have tended to increase the required accidental collision design loads (impact energies) for jack-up rigs. However, the existing simplified design approach tends to be limited to the design and prediction of local members due to the difficulty in applying the increased uniform impact energy to a brace member without regard for the member's position. It is therefore necessary to define accidental load estimation in terms of a reasonable collision scenario and its application to the structural response analysis. We found by a collision probabilistic approach that the kinetic energy ranged from a minimum of 9 MJ to a maximum 1049 MJ. Only 6% of these values are less than the 35 MJ recommendation of DNV-GL (2013). This study assumed and applied a representative design load of 196.2 MN for an impact load of 20,000 tons. Based on this design load, the detailed design of a leg structure was numerically verified via an FE analysis comprising three categories: linear analysis, buckling analysis and progressive collapse analysis. Based on the numerical results from this analysis, it was possible to predict the collapse mode and position of each member in relation to the collision load. This study provided a collision strength assessment between attendant vessels and a jack-up rig based on probabilistic collision scenarios and nonlinear structural analysis. The numerical results of this study also afforded reasonable evaluation criteria and specific evaluation procedures.

Development of Assessment Methodology for Locally Corroded Pipe Using Reference Stress Concept (참조응력개념을 이용한 국부감육배관 평가법 개발)

  • Lim, Hwan;Shim, Do-Jun;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1200-1209
    • /
    • 2003
  • In this paper, a unified methodology based on the local stress concept to estimate residual strength of locally thinned pipes. An underlying idea of the proposed methodology is that the local stress in the minimum section for locally thinned pipe is related to the reference stress, popularly used in creep problems. Then the problem remains how to define the reference stress, that is the reference load. Extensive three-dimensional finite element (FE) analyses were performed to simulate full-scale pipe tests conducted for various shapes of wall thinned area under internal pressure and bending moment. Based on these FE results, the reference load is proposed, which is independent of materials. A natural outcome of this method is the maximum load capacity. By comparing with existing test results, it is shown that the reference stress is related to the fracture stress, which in turn can be posed as the fracture criterion of locally thinned pipes. The proposed method is powerful as it can be easily generalised to more complex problems, such as pipe bends and tee-joints.

Strengthening of perforated walls in cable-stayed bridge pylons with double cable planes

  • Cheng, Bin;Wu, Jie;Wang, Jianlei
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.811-831
    • /
    • 2015
  • This paper focuses on the strengthening methods used for improving the compression behaviors of perforated box-section walls as provided in the anchorage zones of steel pylons. Rectangular plates containing double-row continuous elliptical holes are investigated by employing the boundary condition of simple supporting on four edges in the out-of-plane direction of plate. Two types of strengthening stiffeners, named flat stiffener (FS) and longitudinal stiffener (LS), are considered. Uniaxial compression tests are first conducted for 18 specimens, of which 5 are unstrengthened plates and 13 are strengthened plates. The mechanical behaviors such as stress concentration, out-of-plane deformation, failure pattern, and elasto-plastic ultimate strength are experimentally investigated. Finite element (FE) models are also developed to predict the ultimate strengths of plates with various dimensions. The results of FE analysis are validated by test data. The influences of non-dimensional parameters including plate aspect ratio, hole spacing, hole width, stiffener slenderness ratio, as well as stiffener thickness on the ultimate strengths are illustrated on the basis of numerous parametric studies. Comparison of strengthening efficiency shows that the continuous longitudinal stiffener is the best strengthening method for such perforated plates. The simplified formulas used for estimating the compression strengths of strengthened plates are finally proposed.