• Title/Summary/Keyword: FE models

Search Result 626, Processing Time 0.031 seconds

Mechanical behavior of elliptical concrete-filled steel tubular stub columns under axial loading

  • Ding, Fa-xing;Ding, Xing-zhi;Liu, Xue-mei;Wang, Hai-bo;Yu, Zhi-wu;Fang, Chang-jing
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.375-388
    • /
    • 2017
  • This paper presents a combined experimental, numerical, and analytical study on elliptical concrete-filled steel tubular (E-CFT) and rebar-stiffened elliptical concrete-filled steel tubular (RE-CFT) subjected to axial loading. ABAQUS was used to establish 3D finite element (FE) models for the composite columns and the FE results agreed well with the experimental results. It was found that the ultimate load-bearing capacity of RE-CFT stub columns was 20% higher than that of the E-CFT stub columns. Such improvement was attributed to the reinforcement effects from the internal rebar-stiffeners, which effectively enhanced the confinement effect on the core concrete, thereby significantly improved both the ultimate bearing capacity and the ductility of the E-CFT columns. Based on the results, equations were also established in this paper to predict the bearing capacities of E-CFT and RE-CFT stub columns under axial loading. The predicted results agreed well with both experimental and numerical results, and had much higher accuracy than other available methods.

Strengthening of perforated walls in cable-stayed bridge pylons with double cable planes

  • Cheng, Bin;Wu, Jie;Wang, Jianlei
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.811-831
    • /
    • 2015
  • This paper focuses on the strengthening methods used for improving the compression behaviors of perforated box-section walls as provided in the anchorage zones of steel pylons. Rectangular plates containing double-row continuous elliptical holes are investigated by employing the boundary condition of simple supporting on four edges in the out-of-plane direction of plate. Two types of strengthening stiffeners, named flat stiffener (FS) and longitudinal stiffener (LS), are considered. Uniaxial compression tests are first conducted for 18 specimens, of which 5 are unstrengthened plates and 13 are strengthened plates. The mechanical behaviors such as stress concentration, out-of-plane deformation, failure pattern, and elasto-plastic ultimate strength are experimentally investigated. Finite element (FE) models are also developed to predict the ultimate strengths of plates with various dimensions. The results of FE analysis are validated by test data. The influences of non-dimensional parameters including plate aspect ratio, hole spacing, hole width, stiffener slenderness ratio, as well as stiffener thickness on the ultimate strengths are illustrated on the basis of numerous parametric studies. Comparison of strengthening efficiency shows that the continuous longitudinal stiffener is the best strengthening method for such perforated plates. The simplified formulas used for estimating the compression strengths of strengthened plates are finally proposed.

Effective Inverse Matrix Transformation Method for Haptic Volume Rendering (햅틱 볼륨 렌더링을 위한 효과적인 역행렬 계산법)

  • Kim, Nam-Oh;Min, Wan-Ki;Jung, Won-Tae;Kim, Young-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.183-186
    • /
    • 2007
  • Realistic deformation of computer simulated anatomical structures is computationally intensive. As a result, simple methodologies not based in continuum mechanics have been employed for achieving real time deformation of virtual reality. Since the graphical interpolations and simple spring models commonly used in these simulations are not based on the biomechanical properties of tissue structures, these "quick and dirty"methods typically do not accurately represent the complex deformations and force-feedback interactions that can take place during surgery. Finite Element(FE) analysis is widely regarded as the most appropriate alternative to these methods. However, because of the highly computational nature of the FE method, its direct application to real time force feedback and visualization of tissue deformation has not been practical for most simulations. If the mathematics are optimized through pre-processing to yield only the information essential to the simulation task run-time computation requirements can be drastically reduced. To apply the FEM, We examined a various in verse matrix method and a deformed material model is produced and then the graphic deformation with this model is able to force. As our simulation program is reduced by the real-time calculation and simplification because the purpose of this system is to transact in the real time.

  • PDF

Update the finite element model of Canton Tower based on direct matrix updating with incomplete modal data

  • Lei, Y.;Wang, H.F.;Shen, W.A.
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.471-483
    • /
    • 2012
  • In this paper, the structural health monitoring (SHM) benchmark problem of the Canton tower is studied. Based on the field monitoring data from the 20 accelerometers deployed on the tower, some modal frequencies and mode shapes at measured degrees of freedom of the tower are identified. Then, these identified incomplete modal data are used to update the reduced finite element (FE) model of the tower by a novel algorithm. The proposed algorithm avoids the problem of subjective selection of updated parameters and directly updates model stiffness matrix without model reduction or modal expansion approach. Only the eigenvalues and eigenvectors of the normal finite element models corresponding to the measured modes are needed in the computation procedures. The updated model not only possesses the measured modal frequencies and mode shapes but also preserves the modal frequencies and modes shapes in their normal values for the unobserved modes. Updating results including the natural frequencies and mode shapes are compared with the experimental ones to evaluate the proposed algorithm. Also, dynamic responses estimated from the updated FE model using remote senor locations are compared with the measurement ones to validate the convergence of the updated model.

Structure Modification of the Reciprocating Compressor Using Component Mode Synthesis (부분구조합성법에 의한 왕복동식 압축기 구조 변경)

  • Kim, Soo-Hyun;Lee, Jeong-Ick;Lee, Dong-Yeon;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.45-54
    • /
    • 2011
  • This paper discuss about structure modification method of the reciprocating compressor to reduce its vibration and noise in small refrigeration system. The structure modification is applied using analytic FE models and then applying suggested Component Mode Synthesis(CMS) algorithms. The efficient CMS algorithms to a compressor's fixed base design problem are analytically tried and verified from some experiments.

A Study on the application for Z-Quality steel (Z-Quality 강재 적용에 대한 고찰)

  • Park, Sungjun;Ha, Yunsok
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.8-13
    • /
    • 2017
  • The rolled carbon steel plate has anisotropic property in Z-direction(thickness direction). This is induced by cooling rate difference of Z-direction and sulfur which make non-metallic inclusion(MnS) at center line of thickness direction. Z-directional mechanical properties of normal steel plate are not generally specified and it is defined for Z-Quality steel only through tensile test in Z-direction. If Z-quality steel is not applied for cruciform joint, the lamella tearing will be occurred by tensile stress after welding & during operation of the structure. In this research, one equation estimating Z-directional(orthogonal to plate) stress was developed to prevent lamella tearing by welding. This equation deals with plate thickness & joint configuration(eccentricity, angle and curvature). Analyses were done by strain boundary method using sectional FE modeling and FE 3D models are also used for some cases. Designers can predict the possibility of lamella tearing by adequately applying the result and can appropriately minimize the application of Z-quality steel by revising welding design to some extent.

  • PDF

Seismic Behavior of 3-Story Steel Frame Structures Subjected to Ground Motions (지진동을 받는 3층 강재 프레임 구조물의 지진 거동)

  • Hu, Jongwan;Cha, Youngwook
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.383-394
    • /
    • 2016
  • This study is intended to predict the seismic behavior of the down-scaled 3-story steel frame structures subjected to the real ground motion, and evaluate their structural damage through advanced finite element (FE) analysis results. The FE frame models are designed by considering the effect of the soft story. In addition, the effect of structural asymmetry is also taken into consideration during the nonlinear dynamic analyses. After observing the analysis results, it is reconfirmed that the damage of the steel frame building under the ground motion should be governed by the soft story column rather than the structural mass asymmetry.

KSLV-1 1st stage Rear Fuselage Upper Compartment Detail Design (KSLV-1 1단 후방동체 상부 조합체 상세설계)

  • Yoo, Jae-Seok;Jeong, Ho-Kyeong;Jang, Soon-Young
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.117-131
    • /
    • 2009
  • In this study, a detail design was conducted for KSLV-1 1st stage Rear Fuselage Upper Compartment assembly. A basic structural sizing was done by the aircraft fuselage sizing in-house program. The frame structural design and the interface check were conducted by the FE and the CAD program. The structural margin of safety was conformed by FE analysis for the normal section model and duct cut-out section models which are the weakest parts of the rear fuselage. The shear stress analysis was performed for a fastener design of the skin-stringer which is most affected by the shear stress induced by the shear load.

  • PDF

EVOLUTIONARY STATUS AND INTERNAL STRUCTURE OF μ CASSIOPEIAE

  • BACH, KIEHUNN
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.3
    • /
    • pp.165-175
    • /
    • 2015
  • We investigate physical properties of the nearby (∼ 7.5 pc) astrometric binary μ Cas in the context of standard evolutionary theory. Based on the spectroscopically determined relative abundances ([α/Fe] ≳ +0.4 dex, [Fe/H] ∼ −0.7 dex), all physical inputs such as opacities and equation of state are consistently generated. By combining recent spectroscopic analyses with the astrometric observations from the HIPPARCOS parallaxes and the CHARA array, the evolutionary model grids have been constructed. Through the statistical evaluation of the χ2-minimization among alternative models, we find a reliable evolutionary solution (MA, MB, tage) = (0.74 M, 0.19 M, 11 Gyr) which excellently satisfies observational constraints. In particular, we find that the helium abundance of μ Cas is comparable with the primordial helium contents (Yp ∼ 0.245). On the basis of the well-defined stellar parameters of the primary star, the internal structure and the p-mode frequencies have been estimated. From our seismic computation, μ Cas is expected to have a first order spacing ∆ν ∼ 169 μHz. The ultimate goal of this study is to describe physical processes inside a low-mass star through a complete modelling from the spectroscopic observation to the evolutionary computation.

Study on flexural capacity of simply supported steel-concrete composite beam

  • Liu, Jing;Ding, Fa-xing;Liu, Xue-mei;Yu, Zhi-wu
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.829-847
    • /
    • 2016
  • This paper investigates the flexural capacity of simply supported steel-concrete composite I beam and box beam under positive bending moment through combined experimental and finite element (FE) modeling. 24 composite beams are included into the experiments and parameters including shear connection degree, transverse reinforcement ratio, section form of girder, diameter of stud and loading way are also considered and investigated. ABAQUS is employed to establish FE models to simulate the behavior of composite beams. The influences of a few key parameters, such as the shear connection degree, stud arrangement, stud diameter, beam length and loading way, on flexural capacity are discussed. In addition, three methods including GB standard, Eurocode 4, and Nie method are also used to estimate the flexural capacity of composite beams and also for comparison with experimental and numerical results. The results indicate that Nie method may provide a better estimation in comparison to other two standards.