• Title/Summary/Keyword: FDR 센서

Search Result 37, Processing Time 0.022 seconds

An Experimental Study on the Evaluation of Concrete Unit-Water Content Using High Frequency Moisture Sensor (FDR) (고주파수분센서(FDR)를 활용한 콘크리트 단위수량 평가에 관한 실험적 연구)

  • Lee, Seung-Yeop;Yang, Hyun-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.59-60
    • /
    • 2021
  • The unit-water content has a major problem in concrete structures which leads to micro cracks on the concrete during drying time. Thus, the compressive strength and durability of the concrete structures are significantly reduced. Several techniques have been developed to measure the unit-water content in concrete structures such as heating drying, unit volume mass, and capacitance measurements. However, these techniques have problems in during measurement such as longer time, expensive and difficult in analysis of data. Frequency Domain Reflectivity (FDR) is one of the sensors which used to measure the water content. This method has several advantages including easy to measure, inexpensive, and capable of measuring moisture in real time. In this study, an attempt has been made to evaluate the unit-water content in concrete using the FDR sensor and interpret the data with deep learning method.

  • PDF

Construction and estimation of soil moisture site with FDR and COSMIC-ray (SM-FC) sensors for calibration/validation of satellite-based and COSMIC-ray soil moisture products in Sungkyunkwan university, South Korea (위성 토양수분 데이터 및 COSMIC-ray 데이터 보정/검증을 위한 성균관대학교 내 FDR 센서 토양수분 측정 연구(SM-FC) 및 데이터 분석)

  • Kim, Hyunglok;Sunwoo, Wooyeon;Kim, Seongkyun;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.133-144
    • /
    • 2016
  • In this study, Frequency Domain Reflectometry (FDR) and COSMIC-ray soil moisture (SM) stations were installed at Sungkyunkwan University in Suwon, South Korea. To provide reliable information about SM, soil property test, time series analysis of measured soil moisture, and comparison of measured SM with satellite-based SM product are conducted. In 2014, six FDR stations were set up for obtaining SM. Each of the stations had four FDR sensors with soil depth from 5 cm to 40 cm at 5~10 cm different intervals. The result showed that study region had heterogeneous soil layer properties such as sand and loamy sand. The measured SM data showed strong coupling with precipitation. Furthermore, they had a high correlation coefficient and a low root mean square deviation (RMSD) as compared to the satellite-based SM products. After verifying the accuracy of the data in 2014, four FDR stations and one COSMIC-ray station were additionally installed to establish the Soil Moisture site with FDR and COSMIC-ray, called SM-FC. COSMIC-ray-based SM had a high correlation coefficient of 0.95 compared with mean SM of FDR stations. From these results, the SM-FC will give a valuable insight for researchers into investigate satellite- and model-based SM validation study in South Korea.

Measuring Water Content Characteristics by Using Frequency Domain Reflectometry Sensor in Coconut Coir Substrate (FDR(Frequency Domain Reflectometry)센서를 이용한 코코넛 코이어 배지내 수분특성 측정)

  • Park, Sung Tae;Jung, Geum Hyang;Yoo, Hyung Joo;Choi, Eun-Young;Choi, Ki-Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.158-166
    • /
    • 2014
  • This experiment has investigated suitable methods to improve precision water content monitoring of coconut coir substrates to control irrigation by frequency domain reflectometry(FDR) sensors. Specifically, water content changes and variations were observed at different sensing distances and positions from the irrigation dripper location, and different spaces between the FDR sensors with or without noise filters. Commercial coconut coir substrates containing different ratios of dust and chips(10:0, 7:3, 5:5, 3:7) were used. On the upper side and the side of the substrates, a FDR sensor was used at 5, 10, 20, 30cm distances respectively from the irrigation dripper point, and water content was measured by time after the irrigation. In the glass beads, sensors were installed with or without noise filtering. Closer sensing distance had a higher water content increasing rate, regardless of different coir substrate ratios. There were no differencies of water content increasing rates in 10:0 and 3:7 substrates between the upper side and the side. Whereas, 7:3 and 5:5 substrates showed higher increasing rates on the upper side measurements. Substrates with higher ratios of chip(3:7) had lower increasing rates than others. And, with noise filters, the exatitude of measurement was improved because the variation and deviation were reduced. Therefore, in coconut coir with FDR sensors, an efficient water content measurment to control irrigations can be achieved by installing sensors closer to an irrigation point and upper side of substrates with noise filters.

Development of Continuous Monitoring Method of Root-zone Electrical Conductivity using FDR Sensor in Greenhouse Hydroponics Cultivation (시설 수경재배에서 FDR 센서를 활용한 근권 내 농도의 연속적 모니터링 방법)

  • Lee, Jae Seong;Shin, Jong Hwa
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.409-415
    • /
    • 2022
  • Plant growth and development are also affected by root-zone environment. Therefore, it is important to consider the variables of the root-zone environment when establishing an irrigation strategy. The purpose of this study is to analyze the relationship between the volumetric moisture content (VWC), Bulk EC (ECb), and Pore EC (ECp) used by plant roots using FDR sensors in two types of rockwool media with different water transmission characteristics, using the method above this was used to establish a method for collecting and correcting available root-zone environmental data. For the experiment, two types of rockwool medium (RW1, RW2) with different physical characteristics were used. The moisture content (MC) and ECb were measured using an FDR sensor, ECp was measured after extracting the residual nutrient solution from the medium using a disposable syringe in the center of the medium at a volumetric moisture content (VWC) of 10-100%. Then, ECb and ECp are measured by supplying nutrient solution having different concentration (distilled water, 0.5-5.0) to two types of media (RW1, RW2) in each volume water content range (0 to 100%). The relationship between ECb and ECp in RW1 and RW2 media is best suited for cubic polynomial. The relationship between ECb and ECp according to volume moisture content (VWC) range showed a large error rate in the low volume moisture content (VWC) range of 10-60%. The correlation between the sensor measured value (ECb) and the ECp used by plant roots according to the volumetric water content (VWC) range was the most suitable for the Paraboloid equation in both media (RW1, RW2). The coefficient of determination the calibration equation for RW1 and RW2 media were 0.936, 0.947, respectively.

A Development of Dielectric Measurement System for Detecting Physical Parameters of Ground in Subsurface Dam (지하댐 지반 물성치 측정을 위한 유전율 측정 시스템 개발)

  • Kim Man-il;Jeong Gyo-Cheol;Park Chang-Kun
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.361-369
    • /
    • 2004
  • The authors designed a new technique to measure dielectric constant of a soil media by Frequency Domain Reflectometry (FDR) system and its measurement sensor probe with different length such as 7m, 10cm and 15cm for estimating the variations of dielectric constant. Measurement of dielectric constant of soil material is possible to measure an interference wave generated by between incidence wave and reflection wave which are detected to electro-magnetic wave through the directional coupler at the high frequency range,0.1 to 1.7GHz, by FDR system. The obtained experimental results verified that the technique is very promising for non-destructive and continuous soil volumetric water content measurement monitoring in a laboratory. The relationship between the soil volumetric water content and the dielectric constant of soil media (standard sand) was expressed by a single regression ewe independent of soil texture at a small experimental error. Also the derived regression curve coincided well with that obtained by Topp curve.

Scheduling Non-drainage Irrigation in Coir Substrate Hydroponics with Different Percentages of Chips and Dust for Tomato Cultivation using a Frequency Domain Reflectometry Sensor (토마토 수경재배에서 FDR(Frequency Domain Reflectometry) 센서를 활용한 무배액 시스템에 적합한 코이어 배지의 Chip과 Dust 비율 구명)

  • Choi, Eun-Young;Choi, Ki-Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.248-255
    • /
    • 2013
  • This study examined an automated irrigation technique by a frequency domain reflectometry (FDR) sensor for scheduling irrigation for tomato (Solanum lycopersicum L. 'Starbuck F1') cultivation aimed at avoiding effluent from an open hydroponic system with coir substrate containing different ratios of chip-to-dust (v/v) content. Specifically, the objectives were to undertake preliminary measurements of irrigation volumes, leachate volume, volumetric water content and electrical conductivity (EC) in the substrate, plant growth, fruit yield, and water use efficiency resulting from variation in chip content as an initial experiment. Commercial coir substrates containing different percentages of chips and dust (0 and 100%, 30 and 70%, 50 and 50%, or 70 and 30%), two-story coir substrates with different percentages of chips in the lower layer and dust in the upper layer (15 and 85%, 25 and 75%, or 35 and 65%), or rockwool slabs were used. The results showed that a negligible or no leachate was found for all treatments when plants were grown under a technique for scheduling non-drainage irrigation using a frequency domain reflectometry (FDR) sensor. Daily irrigation volume was affected by chip content in both commercial and two-story slabs. The highest plant growth, marketable fruit weight, and water-use efficiency were observed in the plants grown in the commercial coir slab containing 0% chips and 100% dust, indicating that the FDR sensor-auto-mated irrigation may be more useful for tomato cultivation in coir substrate containing 0% chips and 100% dust using water efficiently and minimizing or avoiding leachate and thus increasing yield and reducing pollution. Detailed experiment is necessary to closely focus on determining appropriate irrigation volume at each of irrigation as well as duration of each individual irrigation cycle depending on different physical properties of substrates using an automated irrigation system operated by the FDR sensor.

A Study on the Determination of Dielectric Constant of Saturated Porous Media Using Frequency Domain Reflectometry System (Frequency Domain Reflectometry System을 이용한 포화 다공질매질의 유전율 측정을 위한 연구)

  • 김만일;정교철
    • The Journal of Engineering Geology
    • /
    • v.14 no.2
    • /
    • pp.179-187
    • /
    • 2004
  • This study conducted a laboratory work to determine the change of dielectric constant of saturated soil porous media, which is injecting EML to use Frequency Domain Reflectometry(FDR) system and length 7cm-length measurement sensor. It is purpose of study that estimate a movement path through pore of soil for an ethanol mixing liquid(EML) which have the same specific gravity of water at $20{\;}^{\circ}C$, and determine to a dielectric measuring range for the measurement sensor. As an outflow point of saturated soil column upper part recedes from an EML inject point in EML diffusion test, the diffusion extent of EML through pore of saturated soil was expanded. And results of ail EML flow experiment were measured the change of dielectric constant at all measurement sensors which are placed to constant interval at the same travel time for saturated soil column. Therefore, the displace process of water that exist in pore of saturated soil by EML injection is enough available and confirm together mobility through pores.

An Experimental Study on the Evaluation of Mortat Unit-Water Content by Powder Ratio Using Frequency Domain Reflectometry Sensor (고주파수분센서를 활용한 분체 비율별 모르타르 단위수량 평가에 관한 실험적 연구)

  • Youn, Ji-Won;Lee, Seung-Yeop;Wi, Kwang-Woo;Yang, Hyun-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.109-110
    • /
    • 2022
  • Currently, interest in the quality of concrete is increasing. Among the important factors for evaluating the quality of concrete, interest in unit-water content is also increasing. Currently, the air-meter method, the microwave oven drying method, the capacitance method, and the microwave penetration method are used to measure the unit-water content of concrete.. Among the above methods, except for the microwave method, the measurement method is complicated, portability is reduced, and economic efficiency is reduced. This research aims to measure a unit-water content by using a Frequency Domain Reflectometry(FDR) sensor that is economical, simple to measure, and portable among microwave methods. In addition, it is an experimental study to determine the accuracy of unit-water content using a single input residual model during deep learning to solve the limitations of the FDR sensor.

  • PDF

An Experimental Study on the Evaluation of Unit-Water Content of High Strength Concrete by Frequency Domain Reflectometry Sensor (고주파수분센서를 통한 고강도 콘크리트 단위수량 평가에 관한 실험적 연구)

  • Youn, Ji-Won;Lee, Seung-Yeop;Yu, Seung-Hwan;Yang, Hyun-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.173-174
    • /
    • 2023
  • In this study, unit-water content was measured using a frequency domain reflecometry(FDR) sensor that complements the problems of the existing unit-water content measurement method to evaluate the unit-water content affecting the workability, durability, and quality of high strength concrete. The experiment used the unit-water content of high strength concrete as a variable, and the accuracy and probability distribution of the unit-water content measured through deep learning were analyzed for the output value output through the FDR sensor. In the case of the unit-water content predicted by deep learning analysis, a high accuracy and high distribution of more than 93% were found within the error range of ± 10 kg/m3. In the future, research is needed to secure high reliability by utilizing data obtained through experiments with various variables.

  • PDF

Evaluation of Oil Infiltration Behavior in Porous Media Using Dielectric Response (유전율에 의한 지반 매질내 유류침투거동 분석)

  • Kim Man-Il;Jeong Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.29-39
    • /
    • 2005
  • For detecting a ground contamination survey, soil sampling method have been used a drilling or coring technique in general. However these methods are very difficult to systematically real-time monitoring of variation of contamination degree in field. ]'n this research frequency Domain Reflectometry (FDR) system was suggested and carried out to experimental approaches for determination of oil contamination on surface and underground. Experimental method using FDR method was discussed with feasibility of measurement in the laboratory column test. It is determined to degree of oil contamination due to response of dielectric constant re-lated with volumetric water content(θ/sub w/) and volumetric oil content( θ/sub al/ ) of saturated and unsaturated soil media. And physical properties such as effective porosity and oil residual ratio of saturated soil media were also measured through real-time monitoring works using installed FDR measurement sensors, which are defected characteristics of oil movement in the saturated soil media under the soil column tests. In the results of these experiments, a range of effective porosity was estimated to about 0.35 compared with initial porosity 0.40 of manufactured saturated soil media, which is also calculated to about 87.5% to the ratio of initial porosity to effective porosity. Finally oil residual ratio which is compared with volumetric water content and volumetric oil content was calculated about 62.5%.