• Title/Summary/Keyword: FDM (Fused deposition modeling)

Search Result 93, Processing Time 0.022 seconds

A Study on the reduction of surface roughness by analyzing the thickness of photocurable sculpture (광조형물의 패턴두께에 따른 표면 거칠기 저감을 위한 공정연구)

  • Kim, Young-Su;Yang, Hyoung-Chan;Kim, Go-Beom;Dang, Hyun-Woo;Doh, Yang-Hoi;Choi, Kyung-Hyun
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.75-82
    • /
    • 2016
  • In this paper, we developed a 3D printing system using a photo-curing resin in order to reduce the surface roughness of a sculpture produced with the 3D printer. Using the pattern of the resulting variable thickness, that gave rise to a stepped shape, and the area error of the photo-curable sculpture, a study was carried out for the process to reduce the surface roughness. At a given value of stage velocity (40~70 mm/s) and output air pneumatic pressure (20~60 kPa), the minimum pattern thickness of the pattern was achieved $65{\mu}m$ and the maximum pattern thickness of up to $175{\mu}m$. To increases the pattern resolution to about $40{\mu}m$, the process conditions should be optimized. 3D surface Nano profiler was used to find the surface roughness of the sculpture that was measured to be minimum $4.7{\mu}m$ and maximum $8.7{\mu}m$. The maximum surface roughness was reduced about $1.2{\mu}m$ for the maximum thickness of the pattern. In addition, a FDM was used to fabricate the same sculpture and its surface roughness measurements were also taken for comparison with the one fabricated using photo-curing. Same process conditions were used for both fabrication setups in order to perform the comparison efficiently. The surface roughness of the photo-curable sculpture is $5.5{\mu}m$ lower than the sculpture fabricated using FDM. A certain circuit patterns was formed on the laminated surface of the photo-curable sculpture while there was no stable pattern on the laminated surface of the FDM based sculpture the other hand.

Comparison of Surface Characteristics According to 3D Printing Methods and Materials for the Fabrication of Microfluidic Systems (미세유체시스템 제작을 위한 3D 프린팅 방식 및 소재 별 표면특성 비교)

  • Bae, Seo Jun;Im, Do Jin
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.706-713
    • /
    • 2019
  • In this study, basic research was conducted to provide guidelines for selecting printers and materials suitable for each application case by analyzing 3D printing method and surface characteristics of materials suitable for microfluidic system. We have studied the surface characteristics according to the materials for the two typical printing methods: The most commonly used method of Fused Deposition Modeling (FDM) printing and the relatively high resolution method of Stereolithography (SLA) printing. The FDM prints exhibited hydrophilic properties before post - treatment, regardless of the material, but showed hydrophobic properties after post - treatment with acetone vapor. It was confirmed by the observation of surface roughness using SEM that the change of the contact angle was due to the removal of the surface structure by post-treatment. SLA prints exhibited hydrophilic properties compared to FDM prints, but they were experimentally confirmed to be capable of surface modification using hydrophobic coatings. It was confirmed that it is impossible to make a transparent specimen in the FDM method. However, sufficient transparency is secured in the case of the SLA method. It is also confirmed that the electroporation chip of the digital electroporation system based on the droplet contact charging phenomenon was fabricated by the SLA method and the direct application to the microfluidic system by demonstrating the electroporation successfully.

A Case Study of Three Dimensional Human Mimic Phantom Production for Imaging Anatomy Education (영상해부학 교육을 위한 3차원 인체 모사 조형물 제작 사례 연구)

  • Seoung, Youl-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.71-78
    • /
    • 2018
  • In this study, human mimic phantoms outputted by three-dimensional (3D) printing technology are reported. Polylactic acid and a personal 3D printer - fused deposition modeling (FDM) - are used as the main material and the printing device. The output of human mimic phantoms performed in the following order: modeling, slicing and G-code conversion, output variable setting, 3D output, and post-processing. The students' learning satisfaction (anatomical awareness, study interest) was measured on 5-point Likert scale. After that, Twenty of those phantoms were outputted. The total output took 11,691 minutes (194 hours 85 minutes) and the average output took 584.55 minutes (9 hours 7 minutes). The filament used for the experiment was 2,390.2 g, and the average use of the filament was 119.51 g. The learning satisfaction of anatomical awareness was 4.6 points on the average and the interest of the class was on average 4.5 points. It is expecting that 3D printing technology can enhance the learning effect of imaging anatomy education.

Feasibility of Fabricating Variable Density Phantoms Using 3D Printing for Quality Assurance (QA) in Radiotherapy

  • Oh, Se An;Kim, Min Jeong;Kang, Ji Su;Hwang, Hyeon Seok;Kim, Young Jin;Kim, Seong Hoon;Park, Jae Won;Yea, Ji Woon;Kim, Sung Kyu
    • Progress in Medical Physics
    • /
    • v.28 no.3
    • /
    • pp.106-110
    • /
    • 2017
  • The variable density phantom fabricated with varying the infill values of 3D printer to provide more accurate dose verification of radiation treatments. A total of 20 samples of rectangular shape were fabricated by using the $Finebot^{TM}$ (AnyWorks; Korea) Z420 model ($width{\times}length{\times}height=50mm{\times}50mm{\times}10mm$) varying the infill value from 5% to 100%. The samples were scanned with 1-mm thickness using a Philips Big Bore Brilliance CT Scanner (Philips Medical, Eindhoven, Netherlands). The average Hounsfield Unit (HU) measured by the region of interest (ROI) on the transversal CT images. The average HU and the infill values of the 3D printer measured through the 2D area profile measurement method exhibited a strong linear relationship (adjusted R-square=0.99563) in which the average HU changed from -926.8 to 36.7, while the infill values varied from 5% to 100%. This study showed the feasibility fabricating variable density phantoms using the 3D printer with FDM (Fused Deposition Modeling)-type and PLA (Poly Lactic Acid) materials.

The Usability Assessment of Self-developed Phantom for Evaluating Automatic Exposure Control System Using Three-Dimensions Printing (자동노출제어장치 평가를 위한 3D 프린팅 기반의 자체 제작 팬텀의 유용성 평가)

  • Lee, Ki-Baek;Nam, Ki-Chang;Kim, Ho-Chul
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.147-153
    • /
    • 2020
  • This study was to evaluate the usability of self-developed phantom for evaluating automatic exposure control (AEC) using three-dimensions (3D) printer. 3D printer of fused deposition modeling (FDM) type was utilized to make the self-developed AEC phantom and image acquisitions were conducted by two different type of scanners. The self-developed AEC phantom consisted of four different size of portions. As a result, two types of phantom (pyramid and pentagon shape) were created according to the combination of the layers. For evaluating the radiation dose with the two types of phantom, the values of tube current, computed tomography dose index volume (CTDIvol), and dose length product (DLP) were compared. As a result, it was confirmed that the values of tube current were properly reflected according to the thickness, and the CTDIvol and DLP were not significantly changed regardless of AEC functions of different scanners. In conclusion, the self-developed phantom by using 3D printer could assess whether the AEC function works well. So, we confirmed the possibility that a self-made phantom could replace the commercially expensive AEC performance evaluation phantom.

Study of Optimal Process Conditions of 3D Porous Polymer Printing for Personal Safety Products (개인안전 제품을 위한 3 차원 다공성 폴리머 프린팅의 최적화 공정조건에 대한 연구)

  • Yoo, Chan-Ju;Kim, Hyesu;Park, Jun-Han;Yun, Dan-Hee;Shin, Jong-Kuk;Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.5
    • /
    • pp.333-339
    • /
    • 2016
  • In this paper, a fundamental experiment regarding the formation of porous 3D structures for personal safety products using 3D PPP (Porous Polymer Printing) was introduced for the first time. The filament was manufactured by mixing PP (Polypropylene) and CBA (Chemical Blowing Agent) with polymer extruder, and the diameter of the filament was approximately 1.75mm. The proposed 3D PPP method, combined with the conventional FDM (Fused Deposition Modeling) procedure, was influenced by process parameters, such as the nozzle temperature, printing speed and CBA density. In order to verify the best processing conditions, the depositing parameters were experimentally investigated for the porous polymer structure. These results provide parameters under which to form a multiple of 3D porous polymer structures, as well as various other 3D structures, and help to improve the mechanical shock absorption for personal safety products.

Size Distributions of Particulate Matter Emitted during 3D Printing and Estimates of Inhalation Exposure (3D 프린팅 가동 조건 별 발생 입자크기 분포와 흡입 노출량 추정)

  • Park, Jihoon;Jeon, Haejoon;Park, Kyungho;Yoon, Chungsik
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.6
    • /
    • pp.524-538
    • /
    • 2018
  • Objective: This study aimed to identify the size distributions of particulate matter emitted during 3D printing according to operational conditions and estimate particle inhalation exposure doses at each respiratory region. Methods: Four types of printing filaments were selected: acrylonitrile-butadiene-styrene (ABS), polylactic acid (PLA), Laywood, and nylon. A fused deposition modeling (FDM) 3D printer was used for printing. Airborne particles between 10 nm and $10{\mu}m$ were measured before, during, and after printing using real-time monitors under extruder temperatures from 215 to $290^{\circ}C$. Inhalation exposures, including inhaled and deposited doses at the respiratory regions, were estimated using a mathematical model. Results: Nanoparticles dominated among the particles emitted during printing, and more particles were emitted with higher temperatures for all materials. Under all temperature conditions, the Laywood emitted the highest particle concentration, followed by ABS, PLA, and nylon. The particle concentration peaked for the initial 10 to 20 minutes after starting operations and gradually decreased with elapsed time. Nanoparticles accounted for a large proportion of the total inhaled particles in terms of number, and about a half of the inhaled nanoparticles were estimated to be deposited in the alveolar region. In the case of the mass of inhaled and deposited dose, particles between 0.1 and $1.0{\mu}m$ made up a large proportion. Conclusion: The number of consumers using 3D printers is expected to expand, but hazardous emissions such as thermal byproducts from 3D printing are still unclear. Further studies should be conducted and appropriate control strategies considered in order to minimize human exposure.

Mechanical Properties of 3D Printed Re-entrant Pattern/Neoprene Composite Textile by Pattern Tilting Angle of Pattern (3D 프린팅 Auxetic Re-entrant 패턴의 기울기 각도에 따른 네오프렌 복합 직물의 역학적 특성에 관한 연구)

  • Kim, Hyelim;Kabir, Shahbaj;Lee, Sunhee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.1
    • /
    • pp.106-122
    • /
    • 2021
  • This study confirmed the mechanical properties of an auxetic re-entrant pattern prepared using 3D printing technology and its composite fabric with neoprene for the production of functional auxetic patterns/textiles for safety shoes. Samples were prepared by the tilt angle of a re-entrant pattern of 0°, 30°, 45°, 60° and 90°, and then analyzed using Poisson's ratio, bending, compression, and tensile properties. A 3D printed auxetic re-entrant pattern (3DP-RE) and its composite fabric (3DP-RE/NP) showed a negative Poisson's ratio in all tilting angles that indicated auxetic properties. The results of the bending property shown that strength of 3DP-RE/NP was 1.5 times lower than NP, but the strain improved 2.0 times. It was confirmed that the deformation of 3DP-RE/NP is possible with a low load. Each sample type of compression behavior indicated similar regardless of the tilting angles; in addition, the compression toughness of 3DP-RE/NP increased 1.2 times compared with NP. In the case of tensile properties, 3DP-RE and 3DP-RE/NP were affected by the tilting angle, samples with 90° (the opposite of load direction) showed best tensile property and toughness. 3DP-RE/NP indicated improved bending, compression, and tensile properties.

A review of 3D printing technology for piezoresistive strain/loadcell sensors (3D 프린팅 센서 연구 동향 소개-전왜성 변형/로드셀 센서 중심으로)

  • Cho, Jeong Hun;Moon, Raymond Hyun Woo;Kim, Sung Yong;Choi, Baek Gyu;Oh, Gwang Won;Joung, Kwan Young;Kang, In Pil
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.388-394
    • /
    • 2021
  • The conventional microelectromechanical system (MEMS) process has been used to fabricate sensors with high costs and high-volume productions. Emerging 3D printing can utilize various materials and quickly fabricate a product using low-cost equipment rather than traditional manufacturing processes. 3D printing also can produce the sensor using various materials and design its sensing structure with freely optimized shapes. Hence, 3D printing is expected to be a new technology that can produce sensors on-site and respond to on-demand demand by combining it with open platform technology. Therefore, this paper reviews three standard 3D printing technologies, such as Fused Deposition Modeling (FDM), Direct Ink Writing (DIW), and Digital Light Processing (DLP), which can apply to the sensor fabrication process. The review focuses on strain/load sensors having both sensing material features and structural features as well. NCPC (Nano Carbon Piezoresistive Composite) is also introduced as a promising 3D material due to its favorable sensing characteristics.

Particle loading as a design parameter for composite radiation shielding

  • Baumann, N.;Diaz, K. Marquez;Simmons-Potter, K.;Potter, B.G. Jr.;Bucay, J.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3855-3863
    • /
    • 2022
  • An evaluation of the radiation shielding performance of high-Z-particle-loaded polylactic acid (PLA) composite materials was pursued. Specimens were produced via fused deposition modeling (FDM) using copper-PLA, steel-PLA, and BaSO4-PLA composite filaments containing 82.7, 75.2, and 44.6 wt% particulate phase contents, respectively, and were tested under broad-band flash x-ray conditions at the Sandia National Laboratories HERMES III facility. The experimental results for the mass attenuation coefficients of the composites were found to be in good agreement with GEANT4 simulations carried out using the same exposure conditions and an atomistic mixture as a model for the composite materials. Further simulation studies, focusing on the Cu-PLA composite system, were used to explore a shield design parameter space (in this case, defined by Cu-particle loading and shield areal density) to assess performance under both high-energy photon and electron fluxes over an incident energy range of 0.5-15 MeV. Based on these results, a method is proposed that can assist in the visualization and isolation of shield parameter coordinate sets that optimize performance under targeted radiation characteristics (type, energy). For electron flux shielding, an empirical relationship was found between areal density (AD), electron energy (E), composition and performance. In cases where ${\frac{E}{AD}}{\geq}2MeV{\bullet}cm{\bullet}g^{-1}$, a shield composed of >85 wt% Cu results in optimal performance. In contrast, a shield composed of <10 wt% Cu is anticipated to perform best against electron irradiation when ${\frac{E}{AD}}<2MeV{\bullet}cm{\bullet}g^{-1}$.