DOI QR코드

DOI QR Code

Mechanical Properties of 3D Printed Re-entrant Pattern/Neoprene Composite Textile by Pattern Tilting Angle of Pattern

3D 프린팅 Auxetic Re-entrant 패턴의 기울기 각도에 따른 네오프렌 복합 직물의 역학적 특성에 관한 연구

  • Kim, Hyelim (Research Institute of Convergence Design, Dong-A University) ;
  • Kabir, Shahbaj (Dept. Fashion & Textiles, Dong-A University) ;
  • Lee, Sunhee (Dept. of Fashion Design, Dong-A University)
  • Received : 2020.08.18
  • Accepted : 2020.09.21
  • Published : 2021.02.28

Abstract

This study confirmed the mechanical properties of an auxetic re-entrant pattern prepared using 3D printing technology and its composite fabric with neoprene for the production of functional auxetic patterns/textiles for safety shoes. Samples were prepared by the tilt angle of a re-entrant pattern of 0°, 30°, 45°, 60° and 90°, and then analyzed using Poisson's ratio, bending, compression, and tensile properties. A 3D printed auxetic re-entrant pattern (3DP-RE) and its composite fabric (3DP-RE/NP) showed a negative Poisson's ratio in all tilting angles that indicated auxetic properties. The results of the bending property shown that strength of 3DP-RE/NP was 1.5 times lower than NP, but the strain improved 2.0 times. It was confirmed that the deformation of 3DP-RE/NP is possible with a low load. Each sample type of compression behavior indicated similar regardless of the tilting angles; in addition, the compression toughness of 3DP-RE/NP increased 1.2 times compared with NP. In the case of tensile properties, 3DP-RE and 3DP-RE/NP were affected by the tilting angle, samples with 90° (the opposite of load direction) showed best tensile property and toughness. 3DP-RE/NP indicated improved bending, compression, and tensile properties.

Keywords

References

  1. AlMaadeed, M. A. A., Ponnamma, D., & Carignano, M. A. (Eds.). (2020). Polymer science and innovative applications: Materials, techniques, and future developments. Amsterdam: Elsevier.
  2. Gu, L., Xu, Q., & Du, Z. (2021). Analysis of tensile behavior of hyperelastic auxetic cellular materials with re-entrant hexagonal cells. The Journal of The Textile Institute, 112(2), 173-186. doi:10.1080/00405000.2020.1729055
  3. Jawaid, M., Thariq, M., & Saba, N. (Eds.). (2019). Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites. Duxford: Woodhead Publishing.
  4. Kabir, S., Kim, H., & Lee, S. (2020a). Characterization of 3D printed auxetic sinusoidal patterns/nylon composite fabrics. Fibers and Polymers, 21(6), 1372-1381. doi:10.1007/s12221-020-9507-6
  5. Kabir, S., Kim, H., & Lee, S. (2020b). Physical property of 3D-printed sinusoidal pattern using shape memory TPU filament. Textile Research Journal, 90(21-22), 2399-2410. doi:10.1177/0040517520919750
  6. Kamrul, H., Zulifqar, A., & Hu, H. (2020). Deformation behavior of auxetic woven fabric based on re-entrant hexagonal geometry in different tensile directions. Textile Research Journal, 90(3-4), 410-421. doi:10.1177/0040517519869391
  7. Kelkar, P. U., Kim, H. S., Cho, K.-H., Kwak, J. Y., Kang, C.-Y., & Song H.-C. (2020). Cellular auxetic structures for mechanical meta-materials: A review. Sensors, 20(11):3132. doi:10.3390/s20113132
  8. Kim, H., & Lee, S. (2020). Mechanical properties of 3D printed re-entrant pattern with various hardness types of TPU filament manufactured through FDM 3D printing. Textile Science and Engineering, 57(3), 166-176. doi:10.12772/TSE.2020.57.166
  9. Kim, J.-S., Lee, D.-J., Kim, I. J., & Ko, J. W. (2019). 신발 제조시스템의 최신 동향 [The latest trends in shoe manufacturing systems]. Fiber Technology and Industry, 23(3), 255-264.
  10. Kolken, H. M. A., & Zadpoor, A. A. (2017). Auxetic mechanical metamaterials. RSC Advances, 7(9), 5111-5129. doi:10.1039/C6RA27333E
  11. Korean Agency for Technology and Standards. (2017a, December 1). KS M ISO14125 Fibre-reinforced plastic composites - Determination of flexural properties. Korean Standards & Certifications. Retrieved from https://www.e-ks.kr/KSCI/standardIntro/getStandardSearchView.do?menuId=919&topMenuId=502&upperMenuId=503&ksNo=KSMISO14125&tmprKsNo=KSMISO14125&reformNo=03
  12. Korean Agency for Technology and Standards. (2017b, December 27). KS M ISO17706 Footwear - Test methods for uppers Tensile strength and elongation. Korean Standards & Certifications. Retrieved from https://www.e-ks.kr/KSCI/standardIntro/getStandardSearchView.do?menuId=919&topMenuId=502&upperMenuId=503&ksNo=KSMISO17706&tmprKsNo=KSMISO17706&reformNo=03
  13. Korean Agency for Technology and Standards. (2018, December 14). KS M ISO604 Plastics - Determination of compressive properties. Korean Standards & Certifications. Retrieved from https://www.e-ks.kr/KSCI/standardIntro/getStandardSearchView.do?menuId=919&topMenuId=502&upperMenuId=503&ksNo=KSMISO604&tmprKsNo=KSMISO604&reformNo=03
  14. Li, T., Liu, F., & Wang, L. (2020). Enhancing indentation and impact resistance in auxetic composite materials. Composites Part B: Engineering, 198:108229. doi:10.1016/j.compositesb.2020.108229
  15. Liu, Y., & Hu, H. (2010). A review on auxetic structures and polymeric materials. Scientific Research and Essays, 5(10), 1052-1063. doi:10.5897/SRE.9000104
  16. Piedade, S. R., Imhoff, A. B., Clatworthy, M., Cohen, M., & Espregueira-Mendes, J. (Eds.). (2019). The sports medicine physician. Cham: Springer.
  17. Ren, X., Das, R., Tran, P., Ngo, T. D., & Xie, Y. M. (2018). Auxetic metamaterials and structures: a review. Smart Materials and Structures, 27(2):023001. doi:10.1088/1361-665X/aaa61c
  18. Soltani, A., Noroozi, R., Bodaghi, M., Zolfagharian, A., & Hedayati, R. (2020). 3D printing on-water sports boards with bio-inspired core designs. Polymers, 12(1):250. doi:10.3390/polym12010250.
  19. Somireddy, M., & Czekanski, A. (2020). Anisotropic material behavior of 3D printed composite structures - Material extrusion additive manufacturing. Materials & Design, 195:108953. doi:10.1016/j.matdes.2020.108953
  20. Water shoe. (2020, December 2). Wikipedia, Retrieved from https://en.wikipedia.org/wiki/Water_shoe
  21. Williams, J. T. (Ed.). (2018). Waterproof and water repellent textiles and clothing. Duxford: Woodhead Publishing.
  22. Xue, Y., Gao, P., Zhou, L., & Han, F. (2020). An enhanced three-dimensional auxetic lattice structure with improved property. Materials, 13(4):1008. doi:10.3390/ma13041008
  23. Zhao, S., Hu, H., Kamrul, H., Chang, Y., & Zhang, M. (2020). Development of auxetic warp knitted fabrics based on reentrant geometry. Textile Research Journal, 90(3-4), 344-356. doi:10.1177/0040517519866931