• Title/Summary/Keyword: FCM (Fuzzy C-Means) clustering

Search Result 161, Processing Time 0.034 seconds

An Object Detection System using Eigen-background and Clustering (Eigen-background와 Clustering을 이용한 객체 검출 시스템)

  • Jeon, Jae-Deok;Lee, Mi-Jeong;Kim, Jong-Ho;Kim, Sang-Kyoon;Kang, Byoung-Doo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • The object detection is essential for identifying objects, location information, and user context-aware in the image. In this paper, we propose a robust object detection system. The System linearly transforms learning data obtained from the background images to Principal components. It organizes the Eigen-background with the selected Principal components which are able to discriminate between foreground and background. The Fuzzy-C-means (FCM) carries out clustering for images with inputs from the Eigen-background information and classifies them into objects and backgrounds. It used various patterns of backgrounds as learning data in order to implement a system applicable even to the changing environments, Our system was able to effectively detect partial movements of a human body, as well as to discriminate between objects and backgrounds removing noises and shadows without anyone frame image for fixed background.

Design of PCA-based pRBFNNs Pattern Classifier for Digit Recognition (숫자 인식을 위한 PCA 기반 pRBFNNs 패턴 분류기 설계)

  • Lee, Seung-Cheol;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.355-360
    • /
    • 2015
  • In this paper, we propose the design of Radial Basis Function Neural Network based on PCA in order to recognize handwritten digits. The proposed pattern classifier consists of the preprocessing step of PCA and the pattern classification step of pRBFNNs. In the preprocessing step, Feature data is obtained through preprocessing step of PCA for minimizing the information loss of given data and then this data is used as input data to pRBFNNs. The hidden layer of the proposed classifier is built up by Fuzzy C-Means(FCM) clustering algorithm and the connection weights are defined as linear polynomial function. In the output layer, polynomial parameters are obtained by using Least Square Estimation (LSE). MNIST database known as one of the benchmark handwritten dataset is applied for the performance evaluation of the proposed classifier. The experimental results of the proposed system are compared with other existing classifiers.

Nucleus Recognition of Uterine Cervical Pap-Smears using FCM Clustering Algorithm

  • Kim, Kwang-Baek
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.94-99
    • /
    • 2008
  • Segmentation for the region of nucleus in the image of uterine cervical cytodiagnosis is known as the most difficult and important part in the automatic cervical cancer recognition system. In this paper, the region of nucleus is extracted from an image of uterine cervical cytodiagnosis using the HSI model. The characteristics of the nucleus are extracted from the analysis of morphemetric features, densitometric features, colormetric features, and textural features based on the detected region of nucleus area. The classification criterion of a nucleus is defined according to the standard categories of the Bethesda system. The fuzzy C-means clustering algorithm is employed to the extracted nucleus and the results show that the proposed method is efficient in nucleus recognition and uterine cervical Pap-Smears extraction.

Context-Aware Security Service using FCM Clustering and Multivariate Fuzzy Decision Tree (FCM 클러스터링과 다변량 퍼지결정트리를 이용한 상황인식 보안 서비스)

  • Yang, Seokhwan;Chung, Mokdong
    • Annual Conference of KIPS
    • /
    • 2009.04a
    • /
    • pp.1527-1530
    • /
    • 2009
  • 유비쿼터스 환경의 확산에 따른 다양한 보안문제의 발생은 센서의 정보를 이용한 상황인식 보안 서비스의 필요성을 증대시키고 있다. 본 논문에서는 FCM (Fuzzy C-Means) 클러스터링과 다변량 퍼지 결정트리 (Multivariate Fuzzy Decision Tree)를 이용하여 센서의 정보를 분류함으로써 사용자의 상황을 인식하고, 사용자가 처한 상황에 따라 다양한 수준의 보안기술을 유연하게 적용할 수 있는 상황인식 보안 서비스를 제안한다. 제안 모델은 기존에 많이 연구되어 오던 고정된 규칙을 기반으로 하는 RBAC(Role-Based Access Control)계열의 모델보다 더욱 유연하고 적합한 결과를 보여주고 있다.

An ACA-based fuzzy clustering for medical image segmentation (적응적 개미군집 퍼지 클러스터링 기반 의료 영상분할)

  • Yu, Jeong-Min;Jeon, Moon-Gu
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.367-368
    • /
    • 2012
  • Possibilistic c-means (PCM) 알고리즘은 fuzzy c-means (FCM) 의 노이즈 민감성을 극복하기 위해 제안 되었다. 하지만, PCM 은 사용되는 시스템 파라미터들의 초기화와 coincident 클러스터링 문제로 인하여 그 성능이 민감하다. 본 논문에서는 이러한 문제점들을 극복하기 위해 개미군집 알고리즘(Ant colony algorithm)을 이용한 퍼지 클러스터링(fuzzy clustering) 알고리즘을 제안한다. 먼저, 개미군집 알고리즘을 통해 PCM 의 클러스터 개수 및 중심 값 파라미터를 최적화 하고, 미리 분류된 화소 정보를 이용하여 PCM 의 coincident 클러스터링 문제를 해결하였다. 제안된 알고리즘의 효율성을 의료 영상 분할 문제에 적용하여 확인하였다.

Improved Access Control using Context-Aware Security Service (상황인식 보안 서비스를 이용한 개선된 접근제어)

  • Yang, Seok-Hwan;Chung, Mok-Dong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.133-142
    • /
    • 2010
  • As the ubiquitous technology has penetrated into almost every aspect of modern life, the research of the security technology to solve the weakness of security in the ubiquitous environment is received much attention. Because, however, today's security systems are usually based on the fixed rules, many security systems can not handle diverse situations in the ubiquitous environment appropriately. Although many existing researches on context aware security service are based on ACL (Access Control List) or RBAC (Role Based Access Control), they have an overhead in the management of security policy and can not manipulate unexpected situations. Therefore, in this paper, we propose a context-aware security service providing multiple authentications and authorization from a security level which is decided dynamically in a context-aware environment using FCM (Fuzzy C-Means) clustering algorithm and Fuzzy Decision Tree. We show proposed model can solve typical conflict problems of RBAC system due to the fixed rules and improve overhead problem in the security policy management. We expect to apply the proposed model to the various applications using contextual information of the user such as healthcare system, rescue systems, and so on.

The Particle Size Distribution of Korean Soils (우리 나라 토양의 입도특성)

  • Woo, Chull-Woong;Chang, Pyoung-Wuck
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.163-166
    • /
    • 2003
  • In this study, a grouping of particle-size distributions(PSDs) by means of the fuzzy c-means clustering method(FCM) was presented. The classification was performed with the whole and the major soil series representing pedological origin. In case of the major soil series, PSDs were clustered as $2{\sim}4$ groups and the characteristics of clustering results were quite different between the soil series. It was found that the characteristics of PSDs at center of each class can be explained by formation process of each soil series. In case of whole soil data, PSDs were classified to 8 classes in which 4 classes were single mode and 4 classes were bimode distributions. Through this study, it is concluded that pedogenetic process is a plausible explanation for grain size distribution of soils.

  • PDF

A Study on Efficiency and Productivity Analysis of Mokpo Port -DEA model and FCM combined analysis- (목포항의 효율성 및 생산성 분석에 관한 연구 -DEA모형과 FCM을 결합분석법-)

  • Kim, Sam-Youl;Choi, Kyoung-Hoon;Pham, Thi Quynh Mai
    • Journal of Korea Port Economic Association
    • /
    • v.36 no.1
    • /
    • pp.183-196
    • /
    • 2020
  • Until now, there have been few studies analyzing the efficiency of the Port of Mokpo and comparing it with other seaports in the country to identify the future direction of development for the port. In this paper, we use the data envelopment analysis (DEA) model in combination with the Malmquist Productivity Index (MPI) to measure the efficiency and productivity of major ports in Korea, focusing on the Port of Mokpo. First, the study identifies which ports are efficient or inefficient based on technical or operational scale. Second, by using the MPI to overcome the shortfalls of the DEA model, the study can compare a port's performance across the years and evaluate the productivity of a port during the research period. Moreover, this study also applies fuzzy C-means (FCM) clustering to classify port groups based on the size of their infrastructure and their efficiency scores. Finally, it is possible to find ways to enhance the efficiency and future direction of development of the Port of Mokpo.

Image Segmentation and Determination of the Count of Clusters using Modified Fuzzy c-Means Clustering Algorithm (변형된 FCM을 이용한 칼라영상의 영역분할과 클러스터 수 결정)

  • 윤후병;정성종;안동언;두길수
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.177-180
    • /
    • 2001
  • 영상에 존재하는 객체들을 인식하기 위해서는 먼저 영상의 영역분할이 필요하다. 통계적 모델을 이용한 영상의 영역분할은 미리서 분할하고자 하는 클러스터의 수를 결정한 후 이를 토대로 영상을 분할하게 된다. 그러나 영상마다 특성상 분할하고자 하는 클러스터 수가 다를 경우 이를 수동적으로 해주는 것은 비능률적이다. 따라서 본 논문은 영상의 영역분할에 통계적 모델에서 미리 결정해줘야 하는 클러스터의 수 문제를 자동으로 검출하고 퍼지 c-Means 글러스터링 알고리즘을 통한 영상의 영역분할 시 노이즈문제를 이웃한 픽셀들의 멤버쉽 값을 평균화합으로써 해결하는 방법을 제안하였다.

  • PDF

Design of Pattern Classifier for Electrical and Electronic Waste Plastic Devices Using LIBS Spectrometer (LIBS 분광기를 이용한 폐소형가전 플라스틱 패턴 분류기의 설계)

  • Park, Sang-Beom;Bae, Jong-Soo;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.477-484
    • /
    • 2016
  • Small industrial appliances such as fan, audio, electric rice cooker mostly consist of ABS, PP, PS materials. In colored plastics, it is possible to classify by near infrared(NIR) spectroscopy, while in black plastics, it is very difficult to classify black plastic because of the characteristic of black material that absorbs the light. So the RBFNNs pattern classifier is introduced for sorting electrical and electronic waste plastics through LIBS(Laser Induced Breakdown Spectroscopy) spectrometer. At the preprocessing part, PCA(Principle Component Analysis), as a kind of dimension reduction algorithms, is used to improve processing speed as well as to extract the effective data characteristics. In the condition part, FCM(Fuzzy C-Means) clustering is exploited. In the conclusion part, the coefficients of linear function of being polynomial type are used as connection weights. PSO and 5-fold cross validation are used to improve the reliability of performance as well as to enhance classification rate. The performance of the proposed classifier is described based on both optimization and no optimization.