• Title/Summary/Keyword: FBR

Search Result 88, Processing Time 0.027 seconds

Development of Bioreactors for Hydrogen-Producing Immobilized Photosynthetic Bacteria(II) : Evaluation of Immobilized Bioreactor for Hydrogen Productivity and Mass Transfer Resistance (광합성 박테리아를 이용한 고성능 수소 생산 고정화 생물반응기의 개발(II) :고정층 반응기와 연속 교반탱크 반응기에서의 수소 생산성 및 물질전달 저항 비교)

  • 선용호;한정우
    • KSBB Journal
    • /
    • v.8 no.3
    • /
    • pp.256-265
    • /
    • 1993
  • In this study, it was observed that hydrogen productivity varied with changes of input g1ucose concentration and dilution rate in FBR( Fixed Bed Reactor), and CSTR(Continuous Stirred Tank Reactor). We evaluated and compared reaction rate Parameters and internal external and overall mass transfer resistances of immobilized carrier in both reactors. Apparent $K_m$ decreased with increasing dilution rate in FBR but showed a constant value above $0.4h^{-1}$ of dilution rate in CSTR. The experimental results in FBR showed nearly analogous to those in CSTR, however, the performance of FBR resulted in lower hydrogen productivity and an external effectiveness factor but a higher internal effectiveness factor than in CSTR. The overall effectiveness factor obtained with various input 91ucose concentrations showed similar values in both reactors.

  • PDF

Design of SECE Energy Harvest Interface Circuit with High Voltage Comparator for Smart Sensor (고전압 비교기를 적용한 스마트 센서용 SECE 에너지 하베스트 인터페이스 회로 설계)

  • Seok, In-Cheol;Lee, Kyoung-Ho;Han, Seok-Bung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.529-536
    • /
    • 2019
  • In order to apply a piezoelectric energy harvester to a smart sensor system, an energy harvest interface circuit including an AC-DC rectifier is required. In this paper, we compared the performance of full bridge rectifier, which is a typical energy harvester interface circuit, and synchronous piezoelectric energy harvest interface circuit by using board-level simulation. As a result, the output power of a synchronous electric charge extraction(: SECE) circuit is about four times larger than that of the full bridge rectifier, and there is little load variation. And a high voltage comparator, which is essential for the SECE circuit for the piezoelectric energy harvester with an output voltage of 40V or more, was designed using 0.35 um BCD process. The SECE circuit using the designed high-voltage comparator proved that the output power is 427 % higher than the FBR circuit.

A Study on Anaerobic Sewage Treatment Using a Fluidized Bed Reactor (유동상 반응조를 이용한 하수의 혐기성 처리에 관한 연구)

  • Ye, Hyoung-Young;Lee, Eun-Young;Bae, Jae-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.265-273
    • /
    • 2012
  • Anaerobic sewage treatment is drawing attentions due to high energy consumptions and sludge production associated with aerobic treatment. This study evaluates the treatment characteristics and energy balance of a fluidized bed reactor (FBR) for treating domestic sewage at $20^{\circ}C{\sim}25^{\circ}C$ for 245 days. Sewage fed to the FBR was a primary clarifier effluent of a domestic sewage treatment plant with COD of 99-301 mg/L and $BOD_{5}$ of 37-149 mg/L. Effluent $SBOD_{5}$ and its removal efficiency at HRT of 1~3 h were 6~15 mg/L and 73.4~85.5%, respectively, achieving high removal efficiency for soluble organic substances even at short HRTs. COD removal efficiency and its effluent concentration were 53.8~75.9% and 51~83 mg/L, respectively. The energy production potential from gaseous methane was 0.009-0.028 kWh/$m^{3}$, which satisfies the energy required for the FBR operation.

Refractory Textile Wastewater Treatment Using Cell-Immobilized Polyethylene glycol Media (PEG 포괄고정화담체를 이용한 난분해성 염색폐수 처리)

  • Han, Duk-Gyu;Cho, Young-Jin;Bae, Woo-Keun;Hwang, Byung-Ho;Lee, Yong-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.345-350
    • /
    • 2006
  • This study investigated the removal of recalcitrant organics in dyeing wastewater using a fluidized bed reactor(FBR) that contained cell-immobilized pellets. The pellets were manufactured and condensing the gel phase by mixing PEG-polymer and cells to form micro-porous PEG-polymer pellets whose size were ${\Phi}\;4mm{\times}H\;4mm$ on average. An industrial activated sludge without any pre-adaptation was used for the cell immobilization because it gave an equivalent removal efficiency to a pre-adapted sludges. The feed was obtained from an effluent of a biological treatment plant, which contained $SCOD_{Cr}$ of 330 mg/L and $SBOD_5$ of 20 mg/L. The $SCOD_{Cr}$ removal efficiency was over 45% and the effluent $COD_{Mn}$ concentration was less than 100 mg/L at HRTs from 6 to 24 hrs. The optimum HRT in the FBR was determined as 12 hrs considering the removal efficiency and cost. When a raw wastewater containing 768 mg/L of $COD_{Cr}$ was fed to the FBR, the effluent $COD_{Cr}$ concentration increased only slightly, giving a 70% of $COD_{Cr}$ removal or a 97% of $BCOD_5$ removal. This indicated that the FBR had an excellent capability of biodegradable organics removal also. In conclusion, the FBR could be applied to textile wastewater treatment in place of an activated sludge process.

Signal-to-noise ratio enhancement of ultrasonic signal by using constant frequency-to-bandwidth ratio decomposition method (비대역폭 분할 방법을 이용한 초음파 신호의 S/N 비 개선)

  • 김태현;구길모;고대식;전계석
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.5
    • /
    • pp.50-57
    • /
    • 1994
  • In the non-destructive evaluation techniques using ultrasonic signal, backscattering noise from grain interface decreases the SNR of received signal. In this paper, SSP(split-spectrum processing) based on the constant FBR decomposition method has been applied to enhance the SNR. This algorithm helps to find optimal parameters of filter bank through a simple theory and has an advantage that reduce the signal processing time compared with the conventional constant bandwidth decomposition method. In this experiment, the 304 stainless steel sample is heat-treated and received ultrasonic signal is processed by SSP using the constand bandwidth decomposition method and the constand FBR decomposition method enhanced the SNR by 1.4 dB and reduced the required number of filters by 4 compared with the constant bandwidth decomposition method.

  • PDF

THE IMPACT OF FUEL CYCLE OPTIONS ON THE SPACE REQUIREMENTS OF A HLW REPOSITORY

  • Kawata, Tomio
    • Nuclear Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.683-690
    • /
    • 2007
  • Because of increasing concerns regarding global warming and the longevity of oil and gas reserves, the importance of nuclear energy as a major source of sustainable energy is gaining recognition worldwide. To make nuclear energy truly sustainable, it is necessary to ensure not only the sustainability of the fuel supply but also the sustained availability of waste repositories, especially those for high-level radioactive waste (HLW). From this perspective, the effort to maximize the waste loading density in a given repository is important for easing repository capacity problems. In most cases, the loading of a repository is controlled by the decay heat of the emplaced waste. In this paper, a comparison of the decay heat characteristics of HLW is made among the various fuel cycle options. It is suggested that, for a future fast breeder reactor (FBR) cycle, the removal and burning of minor actinides (MA) would significantly reduce the heat load in waste and would allow for a reduction of repository size by half.

FUNCTIONAL MODELLING FOR FAULT DIAGNOSIS AND ITS APPLICATION FOR NPP

  • Lind, Morten;Zhang, Xinxin
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.753-772
    • /
    • 2014
  • The paper presents functional modelling and its application for diagnosis in nuclear power plants. Functional modelling is defined and its relevance for coping with the complexity of diagnosis in large scale systems like nuclear plants is explained. The diagnosis task is analyzed and it is demonstrated that the levels of abstraction in models for diagnosis must reflect plant knowledge about goals and functions which is represented in functional modelling. Multilevel flow modelling (MFM), which is a method for functional modelling, is introduced briefly and illustrated with a cooling system example. The use of MFM for reasoning about causes and consequences is explained in detail and demonstrated using the reasoning tool, the MFMSuite. MFM applications in nuclear power systems are described by two examples: a PWR; and an FBR reactor. The PWR example show how MFM can be used to model and reason about operating modes. The FBR example illustrates how the modelling development effort can be managed by proper strategies including decomposition and reuse.