Status and Prospects of FBR and Nuclear Fuel Cycle in China

Zhixiang ZHAO China Institute of Atomic Energy Beijing, P.R.China

Status of NPP in China Mainland

Site	Capacity/Type	Grid Date
Qinshan I	300MW/PWR	1991.12.15
Daya Bay -1	900MW/PWR	1993.08.31
-2	900MW/PWR	1994.02.07
QinshanII-1	600MW/PWR	2002.02.01
-2	600MW/PWR	2004.03.11
Lingao -1	984MW/PWR	2002.04.05
-2	984MW/PWR	2002.12.15
QinshanIII-1	700MW/PHWR	2002.11.10
-2	700MW/PHWR	2003.06.12
Tianwan -1	1000MW/PWR	2004.12
-2	1000MW/PWR	2005.12

Near-Term Program: $2005\sim2006$

- Extension of Qinshan II: units 3&4 2×650MWe, will start construction next year
- Extension of Lingao :units 3&4 2×900MWe, will start construction next year

Mid-Term Program: 2007~2015

•Tianwan site: PWR

6×1000~1500MW

• Sanmen site: PWR

6×1000~1500MW

• Yangjiang site: PWR

6×1000~1500MW

• Up to 2020: Capacity for NPP will be 40 GWe

Long-Term Program: 2020~2050

40 GWe in 2020 240 GWe in 2050

Impossible to use only PWRs due to Uranium resources limited

Nuclear Electricity Capacity Growth by Matched PWR-FBR

Year	PWRs (GWe)	U Required (103t)	rement PWR+FBR (GWe)
2005	8.5	5.5	8.5
2010	16.3	16.5	16.3
2020	32	54.9	32
2030	50	117.5	77
2040	47.9	186.0	160
2050	33.7	246.4	386

Assuming:

- capacity increases linearly
- LFBR deployed at 2030 with closed fuel cycle

Electric Capacity Development Envisaged In China

P&T strategyEstimated MA and LLFP Accumulation from PWRs

Year	PWRs(GWe)	MA(t)	LLFP(t)
2005	8.5	0.6	1.0
2010	16.3	2.0	3.2
2020	32	7.0	11.2
2030	50	15.4	24.7
2040	47.9	25.0	40.5
2050	33.7	34.0	54.0

Fast burner: rather realistic

- safe
 with good dynamic properties
- large support ratio: 4 for FBR 10 for ADS

MA Transmutation Strategy

Some Technical Selections: Breeding, P&T strategy

- PWR spent fuel reprocessing pilot
 - Matured process PUREX UO₃ or U₃O₈ and PuO₂ as Products
 - HLW temporarily stored to wait suitable extraction process for MA under development in CIAE and Tsinghua U
- FBR MOX spent fuel reprocessing
- Molten salt technology

Development for Breeder and Burner with large support ratio

- R&D work for ADS system as Burner, in CIAE
- Development of FBR as Breeder and Burner, in CIAE
- 500 kg MOX Laboratory
 - mechanical mixing of U and Pu oxide powders and sintering process
- UPuZr development

Fuel Cycle Program and Consideration

Milestone for CEFR

2000. 5 Construction Permission Issued Construct Foundation Base

2001. 3 Construction Above Base

2002. 8 Main Building (57m) for Nuclear Island Completed

CEFR Main Design Parameters

Thermal Power	MW	65
Electric Power, net	MW	20
Reactor Core Height	em	45.0
Diameter Equivalent	cm	60.0
Fuel/First Loading		(Pu, U) O2 / UO2
Pu, total	kg	106.87
Pu-239	kg	65.76
U-235 (enrichment)	kg	92.33 (36%) / 236.7(64.4%)
Linear Power max.	W/cm	430

Recent Status of CEFR

90% components and systems ordered 400 components installed

70% non-sodium systems installed Na systems only 20%

Future planning for CEFR

2005: starting installation of Reactor Block

 $2005 \sim 2007$: Pre-operation testing

2008.6~2008.7: Physics start-up and first criticality 2008.12: 40% full power incorporated to the grid

Progress in ADS Research

VENUS-I facility has been completed

Experiments are going on at VENUS-I

RFQ accelerator

founded

Energy: 3.5 MeV Current: 50 mA Duty Factor: >6% ECR Ion Source

Energy 75keV Current 67mA

Proton Ratio > 80%

Reliability 120h

Summary

The strategy for NPP development shows a complicated fuel cycle structure including many new technologies

need expensive R&D, demonstration
The profits is still larger than expenses
due to a large scale utilization to nuclear energy