• Title/Summary/Keyword: FAB Scheduling

Search Result 15, Processing Time 0.013 seconds

The Operational Optimization of Semiconductor Research and Development Fabs by FAB-wide Scheduling (FAB-Wide 스케줄링을 통한 반도체 연구라인의 운용 최적화)

  • Kim, Young-Ho;Lee, Jee-Hyong;Sun, Dong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.692-699
    • /
    • 2008
  • Semiconductor research and development(R&D) fabs are very different than production fabs in many ways such as the scales of production, job priority, production methods, and performance measures. Efficient operations of R&D fabs are very important to the development of new product, process stability, high yield, and ultimately company competitiveness. This paper proposes the fab-wide scheduling method for operational optimization of the R&D fabs. Most scheduling systems of semiconductor fabs have only focused on maximizing throughput of each separated areas without considering WIP(works in process) flows of entire fab. In this paper, we proposes the a fab-wide scheduling system which schedules all lots to entire fab equipment at once. We develop the MIP(mixed integer programing) model which allocates the lots to production equipment considering many constraints of all processes and the CP(constraint programming) model which determines the sequences of the lots in the production equipment. The proposed FAB-wide scheduling model is applied to the newly constructed R&D fab. As a result, we have accomplished the system based automated job reservation, decrease of the hot lot delay, increase of the queue time satisfaction, the high throughput by maximizing the batch sizes, decrease of the WIP TAT(Turn Around Time).

A Milestone Generation Algorithm for Efficient Control of FAB Process in a Semiconductor Factory (반도체 FAB 공정의 효율적인 통제를 위한 생산 기준점 산출 알고리듬)

  • Baek, Jong-Kwan;Baek, Jun-Geol;Kim, Sung-Shick
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.4
    • /
    • pp.415-424
    • /
    • 2002
  • Semiconductor manufacturing has been emerged as a highly competitive but profitable business. Accordingly it becomes very important for semiconductor manufacturing companies to meet customer demands at the right time, in order to keep the leading edge in the world market. However, due-date oriented production is very difficult task because of the complex job flows with highly resource conflicts in fabrication shop called FAB. Due to its cyclic manufacturing feature of products, to be completed, a semiconductor product is processed repeatedly as many times as the number of the product manufacturing cycles in FAB, and FAB processes of individual manufacturing cycles are composed with similar but not identical unit processes. In this paper, we propose a production scheduling and control scheme that is designed specifically for semiconductor scheduling environment (FAB). The proposed scheme consists of three modules: simulation module, cycle due-date estimation module, and dispatching module. The fundamental idea of the scheduler is to introduce the due-date for each cycle of job, with which the complex job flows in FAB can be controlled through a simple scheduling rule such as the minimum slack rule, such that the customer due-dates are maximally satisfied. Through detailed simulation, the performance of a cycle due-date based scheduler has been verified.

Capacitated Fab Scheduling Approximation using Average Reward TD(${\lambda}$) Learning based on System Feature Functions (시스템 특성함수 기반 평균보상 TD(${\lambda}$) 학습을 통한 유한용량 Fab 스케줄링 근사화)

  • Choi, Jin-Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.4
    • /
    • pp.189-196
    • /
    • 2011
  • In this paper, we propose a logical control-based actor-critic algorithm as an efficient approach for the approximation of the capacitated fab scheduling problem. We apply the average reward temporal-difference learning method for estimating the relative value functions of system states, while avoiding deadlock situation by Banker's algorithm. We consider the Intel mini-fab re-entrant line for the evaluation of the suggested algorithm and perform a numerical experiment by generating some sample system configurations randomly. We show that the suggested method has a prominent performance compared to other well-known heuristics.

Model-based Estimation of Production Parameters of Electronics FAB Equipment (모델기반의 전자부품 FAB설비 생산기준정보 추정)

  • Kang, Dong-Hun;Kim, Min-Kyu;Choi, Byoung-Kyu;Park, Bum-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.2
    • /
    • pp.166-173
    • /
    • 2007
  • In this paper, we propose a model-based approach to estimating production parameters of semiconductor FAB equipment. For FAB scheduling, for example, we need to know equipment's production parameters such as flow time, tact time, setup time, and down time. However, these data are not available, and they have to be estimated from material move data such as loading times and unloading times that are automatically collected in modern automated semiconductor FAB. The proposed estimation method may be regarded as a Bayes estimation method because we use additional information about the production parameters. Namely, it is assumed that the technical ranges of production parameters are known. The proposed estimation method has been applied to a LCD FAB, and found to be valid and useful.

A Study on Multi-criteria Trade-off Structure between Throughput and WIP Balancing for Semiconductor Scheduling (반도체/LCD 스케줄링의 다목적기준 간 트레이드 오프 구조에 대한 연구)

  • Kim, Kwanghee;Chung, Jaewoo
    • Korean Management Science Review
    • /
    • v.32 no.4
    • /
    • pp.69-80
    • /
    • 2015
  • The semiconductor industry is one of those in which the most intricate processes are involved and there are many critical factors that are controlled with precision in those processes. Naturally production scheduling in the semiconductor industry is also very complex and studied by the industry and academia for many years; however, still there are many issues left unclear in the problem. This paper proposes an multi-objective optimization-based scheduling method for semiconductor fabrication(fab). Two main objectives are throughput maximization and meeting target production quantities. The first objective aims to reduce production cost, especially the fixed cost incurred by a large investment constructing a new fab facility. The other is meeting customer orders on time and also helps a fab maintain stable throughput through controlled WIP balancing in the long run. The paper shows a trade-off structure between the two objectives through experimental studies, which provides industrial practitioners with useful references.

A Simulation-based Optimization for Scheduling in a Fab: Comparative Study on Different Sampling Methods (시뮬레이션 기반 반도체 포토공정 스케줄링을 위한 샘플링 대안 비교)

  • Hyunjung Yoon;Gwanguk Han;Bonggwon Kang;Soondo Hong
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.67-74
    • /
    • 2023
  • A semiconductor fabrication facility(FAB) is one of the most capital-intensive and large-scale manufacturing systems which operate under complex and uncertain constraints through hundreds of fabrication steps. To improve fab performance with intuitive scheduling, practitioners have used weighted-sum scheduling. Since the determination of weights in the scheduling significantly affects fab performance, they often rely on simulation-based decision making for obtaining optimal weights. However, a large-scale and high-fidelity simulation generally is time-intensive to evaluate with an exhaustive search. In this study, we investigated three sampling methods (i.e., Optimal latin hypercube sampling(OLHS), Genetic algorithm(GA), and Decision tree based sequential search(DSS)) for the optimization. Our simulation experiments demonstrate that: (1) three methods outperform greedy heuristics in performance metrics; (2) GA and DSS can be promising tools to accelerate the decision-making process.

An Unload and Load Request Logic for Semiconductor Fab Considering Inter-Bay Material Flow (Inter-Bay 물류 흐름을 고려한 반도체 Fab의 Unload 및 Load Request Logic 개발)

  • Suh, Jung-Dae;Koo, Pyung-Hoi;Jang, Jae-Jin
    • IE interfaces
    • /
    • v.17 no.spc
    • /
    • pp.131-140
    • /
    • 2004
  • The purpose of this paper is to develop and show the efficiency of the URL(Unload Request Logic) and LRL(Load Request Logic) of the dispatcher in the Fab(Fabrication) Manufacturing Execution System. These logics are the core procedures which control the material(wafer and glass substrate) flow efficiently in the semiconductor and LCD fab considering inter-bay as well as intra-bay material flow. We use the present and future status information of the system by look-ahead and the information about the future transportation schedule of Automated Guided Vehicles. The simulation results show that the URL and LRL presented in this paper reduce the average lead time, average and maximum WIP level, and the average available AGV waiting time.

Scheduling Simulator for Semiconductor Fabrication Line (반도체 FAB의 스케줄링 시뮬레이터 개발)

  • Lee, Young-Hoon;Cho, Han-Min;Park, Jong-Kwan;Lee, Byung-Ki
    • IE interfaces
    • /
    • v.12 no.3
    • /
    • pp.437-447
    • /
    • 1999
  • Modeling and system development for the fabrication process in the semiconductor manufacturing is presented in this paper. Maximization of wafer production can be achieved by the wafer flow balance under high utilization of bottleneck machines. Relatively simpler model is developed for the fabrication line by considering main characteristics of logistics. Simulation system is developed to evaluate the line performance such as balance rate, utilization, WIP amount and wafer production. Scheduling rules and input rules are suggested, and tested on the simulation system. We have shown that there exists good combination of scheduling and input rules.

  • PDF

Real-Time Scheduling System Re-Construction for Automated Manufacturing in a Korean 300mm Wafer Fab (반도체 자동화 생산을 위한 실시간 일정계획 시스템 재 구축에 관한 연구 : 300mm 반도체 제조라인 적용 사례)

  • Choi, Seong-Woo;Lee, Jung-Seung
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.213-224
    • /
    • 2009
  • This paper describes a real-time scheduling system re-construction project for automated manufacturing at a 300mm wafer fab of Korean semiconductor manufacturing company. During executing this project, for each main operation such as clean, diffusion, deposition, photolithography, and metallization, each adopted scheduling algorithm was developed, and then those were implemented in a real-time scheduling system. In this paper, we focus on the scheduling algorithms and real-time scheduling system for clean and diffusion operations, that is, a serial-process block with the constraint of limited queue time and batch processors. After this project was completed, the automated manufacturing utilizations of clean and diffusion operations became around 91% and 83% respectively, which were about 50% and 10% at the beginning of this project. The automated manufacturing system reduces direct operating costs, increased throughput on the equipments, and suggests continuous and uninterrupted processings.

  • PDF

Bottleneck Scheduling for Cycletime Reduction in Semiconductor Fabrication Line (반도체 FAB공정의 사이클타임 단축을 위한 병목일정계획)

  • 이영훈;김태헌
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.298-301
    • /
    • 2001
  • In semiconductor manufacturing, wafer fabrication is the most complicated and important process, which is composed of several hundreds of process steps and several hundreds of machines involved. The productivity of the manufacturing mainly depends on how well they control balance of WIP flow to achieve maximal throughput under short manufacturing cycle time. In this paper mathematical formulation is suggested for the stepper scheduling, in which cycle time reduction and maximal production is achieved.

  • PDF