• Title/Summary/Keyword: FAA(federal Aviation Administration)

Search Result 37, Processing Time 0.019 seconds

A Research on the Design and Operation of Regional Hub-Level Vertiport (지역 허브급 버티포트의 설계 및 운영 연구)

  • Dong-Wook Lee;Dong-Kyu Lee;Sung-Sik Park
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.1
    • /
    • pp.79-90
    • /
    • 2024
  • UAM is emerging due to the deepening population concentration in the metropolitan area and the problem of congested ground transportation in urban areas. Accordingly, along with research on eVTOL aircraft for UAM services, interest in vertiport, the interest in vertiports, the infrastructure that allows eVTOLs to take off and land, is also increasing. However, behind the concentration of population in the metropolitan area, aphenomenon of local extinction is occurring in conjunction with the aging population. AAM, which moves quickly through 3D space, can be an effective SOC facility in times of local extinction crisis. In this paper, we introduce a design plan from the perspective of a complex transper center for a regional hub-level vertiport that can connect with local high-speed rail and utilize local airports in compliance with the vertiport design guidelines issued by FAA(Federal Aviation Administration) and EASA(European union Aviation Safety Agency). We would like to present Vertiport's future operation plan.

Establishment of Flight Simulation Environment for Evaluation of Helicopter Flying Quality (헬리콥터 비행성 평가를 위한 모의비행시험 환경의 구현)

  • Han, Dong-Ju;Lee, Sang-Haeng
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.783-791
    • /
    • 2007
  • For an access to specified helicopter simulator qualification's level C or FTD(Flight Training Device) level 5 of FAA(Federal Aviation Administration) AC(Advisory Circular) 120-63, the mathematical model of a single rotor helicopter flight dynamics is investigated. From the rotorcraft simulation model validated by evaluation of its flight performance, the feasibility of the flight dynamic model that is selected for its effectiveness has been proved. Thereby the simulation environment for evaluation of helicopter flying quality is established with the development of FTD for training and testing the flight performance.

Noise Analysis for the Operation of the eVTOL PAV using AEDT (Aviation Environmental Design Tool) (AEDT(Aviation Environmental Design Tool)를 이용한 전기추진 수직이착륙형 PAV 운영을 위한 소음 분석)

  • Yun, Ju-Yeol;Lee, Bong-Sul;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.4
    • /
    • pp.265-272
    • /
    • 2019
  • In this paper, we selected commuting scenarios in the most congested metropolitan area in Korea, and conducted noise analysis during personal air vehicle (PAV) operation using aviation environmental design tool (AEDT)software which was developed by Federal Aviation Administration (FAA). Noise is the second important factor after safety in order to operate PAVs through concepts such as ODM (on-demand mobility) introduced by National Aeronautics and Space Administration (NASA). Noise analysis were performed by modeling low-noise ePAVs as commercial helicopters and predicted residential suitability in order to resolve problems in which accurate NPD (noise power distance) data from PAVs were not released. The application of noise reduction technology such as electric propulsion has significantly reduced noise exposure levels and has reached the conclusion that commuting with PAVs is feasible without noise problems in the metropolitan area.

Development of a Junction between Airport Concrete and Asphalt Pavements (공항 콘크리트와 아스팔트 포장 간의 접속 방법 개발)

  • Park, Hae Won;Kim, Dong Hyuk;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.20 no.4
    • /
    • pp.15-20
    • /
    • 2018
  • PURPOSES : The purpose of this study is to analyze the magnitude of shoving of asphalt pavement by junction type between airport concrete and asphalt pavements, and to suggest a junction type to reduce shoving. METHODS : The actual pavement junction of a domestic airport, which is called airport "A" was modified by placing the bottom of the buried slab on the top surface of the subbase. A finite element model was developed that simulated three junction types: a standard section of junction proposed by the FAA (Federal Aviation Administration), an actual section of junction from airport "A" and a modified section of junction from airport "A". The vertical displacement of the asphalt surface caused by the horizontal displacement of the concrete pavement was investigated in the three types of junction. RESULTS : A vertical displacement of approximately 13 mm occurred for the FAA standard section under horizontal pushing of 100 mm, and a vertical displacement of approximately 55 mm occurred for the actual section of airport "A" under the same level of pushing. On the other hand, for the modified section from airport "A" a vertical displacement of approximately 17 mm occurred under the same level of pushing, which is slightly larger than the vertical displacement of the FAA standard section. CONCLUSIONS : It was confirmed that shoving of the asphalt pavement at the junction could be reduced by placing the bottom of the buried slab on the top surface of the subbase. It was also determined that the junction type suggested in this study was more advantageous than the FAA standard section because it resists faulting by the buried slab that is connected to the concrete pavement. Faulting of the junctions caused by aircraft loading will be compared by performing finite element analysis in the following study.

Analysis of the Factors and Patterns Associated with Death in Aircraft Accidents and Incidents Using Data Mining Techniques (데이터 마이닝 기법을 활용한 항공기 사고 및 준사고로 인한 사망 발생 요인 및 패턴 분석)

  • Kim, Jeong-Hun;Kim, Tae-Un;Yoo, Dong-Hee
    • Journal of Digital Convergence
    • /
    • v.17 no.9
    • /
    • pp.79-88
    • /
    • 2019
  • This study analyzes the influential factors and patterns associated with death from aircraft accidents and incidents using data mining techniques. To this end, we used two datasets for aircraft accidents and incidents, one from the National Transportation Safety Board (NTSB) and the other from the Federal Aviation Administration (FAA). We developed our prediction models using the decision tree classifier to predict death from aircraft accidents or aircraft incidents and thereby derive the main cause factors and patterns that can cause death based on these prediction models. In the NTSB data, deaths occurred frequently when the aircraft was destroyed or people were performing dangerous missions or maneuver. In the FAA data, deaths were mainly caused by pilots who were less skilled or less qualified when their aircraft were partially destroyed. Several death-related patterns were also found for parachute jumping and aircraft ascending and descending phases. Using the derived patterns, we proposed helpful strategies to prevent death from the aircraft accidents or incidents.

위성항법시스템 및 보강시스템의 구축 현황

  • Nam, Gi-Uk;Heo, Mun-Beom;Sim, Ju-Yeong
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.5 no.1
    • /
    • pp.65-74
    • /
    • 2007
  • 현재 운용중인 전 세계적인 위성항법시스템(GNSS : Global Navigation Satellite System)은 미국의 GPS(Global Positioning System)와 러시아의 GLONASS(Global Navigation Satellite System)가 있다. 전 세계적으로 주로 사용되는 시스템은 GPS이며, GLONASS는 러시아의 경제사정 악화로 인하여 지속적인 위성발사가 이루어지지 못하고 있다. 추가적으로 추진되고 있는 위성항법시스템은 유럽의 갈릴레오(Galileo), 중국의 북두(Beidou), 일본의 JRANS(Japanese Regional Advanced Navigation System) 그리고 2006년 5월에 구축 프로젝트가 승인된 인도의 IRNSS(Indian Regional Navigation Satellite System)가 있다. 보강시스템의 경우, 미국 FAA(Federal Aviation Administration)는 광역오차보정시스템(WAAS)을 Raytheon사와 개발하였으며, 현재 착륙용 근거리오차보정시스템(LAAS)을 Raytheon사 및 Honeywell사와 함께 정부/산업체 공동개발 사업(GIP; Government Industry Partnership)으로 진행 중에 있다. 유럽은 EGNOS(European Geostationary Navigation Overlay Service)를 사용하고 있으며, 일본의 MSAT(MTSAT Satellite Based Augmentation System)와 인도의 GAGAN(GPS and GEO Augmented Navigation)은 추진 중이다. 이 글에서는 위성항법시스템과 위성항법 보강시스템의 현황을 살펴본다.

  • PDF

Safety Risk Management Policy of United States small unmanned aerial system (미 소형 무인비행체계의 안전성 위험관리 정책)

  • Hong, Jin-Keun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.9
    • /
    • pp.35-42
    • /
    • 2021
  • The purpose of this paper is to review the small unmanned aerial system (sUAS) safety policy promoted by the United States(US) government. Therefore, in this paper, along with sUAS risk factors, the risk factors of sUAS that the US government is interested in are described. In addition, the risk factors were classified into physical and non-physical factors, and provisions mentioned in the Federal Aviation Administration(FAA) Relicensing Act were reviewed. Other risk scenarios were analyzed focusing on target scenario items that the FAA is interested in, such as flight operation disruption, infrastructure damage, and facility trespassing. Of course, we looked at the risk management principles promoted by the US FAA. In this paper, as a research method, the direction and contents of the FAA's sUAS policy were studied and reviewed from the analysis of major foreign journals and policy. In the research result of this paper, by analyzing the FAA sUAS safety risk management policy, the integrated operation and safety policy, physical risk management policy, operation and safety regulation, and sUAS policy and technology direction necessary for establishing the sUAS safety risk management guide in Korea are presented. The contribution of this study is to identify the leading US sUAS safety policy direction, and it can be used as basic data for deriving future domestic policy directions from this. Based on the research results presented in the future, policy studies are needed to derive detailed implementation plans.

Research on Application of Requirements-based Software Reliability Verification to Domestic Military Aircraft (요구사항 기반 소프트웨어 신뢰성 인증의 국내 군용 항공기 적용방안 연구)

  • Jeong, Sang-gyu;Seo, Young-jin;Jang, Min-uk;Lee, Yoon-woo
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.4
    • /
    • pp.264-270
    • /
    • 2018
  • In recent years, It is required to verify software reliability according to DO-178, which announced by radio technical commission for aeronautics (RTCA) and recognized by the Federal Aviation Administration (FAA), for civil aircraft developed or intended to fly in the United States or Europe. This is because the reliance on software in each field is deepening, and the efforts for improvement of software reliability have been made first in civil aviation field where economic and social impacts are catastrophic in the event of an accident. In this paper, we have identified some issues to be considered for requirements-based reliability verification required by DO-178 to improve software reliability and present the major elements of the present weapon system acquisition procedure of DAPA for each stage. In addition, we analyzed the results of applying the identified main check factors to a domestic aircraft development project based on the information accumulated in overseas aircraft development projects. As a result, we have shown that it is possible to verify requirements-based software reliability according to DO-178 by adding key checkpoints to the current weapon system acquisition procedure and providing objective inspection criteria.

Analysis of Effects of Lightning on PAV Using Computational Simulation and a Proposal to Establish Certification Guidance (전산 시뮬레이션을 통한 PAV 낙뢰 영향성 분석 및 인증기술에 관한 연구)

  • Park, Se-Woong;Kim, Yun-Gon;Kang, Yong-Seong;Myong, Rho-Shin
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.60-69
    • /
    • 2019
  • Companies around the world are actively developing Personal Air Vehicle (PAV) to solve the serious social problem of traffic jams. Airworthiness certification for PAV is required, since it is a manned vehicle. As with aircraft, the critical threat to the safe operation of PAV is lightning strike with strong thermal load and magnetic fields. Lightning certification issue also remains important for PAV, since there are still insufficient development of PAV-related lightning certification technologies, guidelines, and requirements. In this study, the SAE Aerospace Recommended Practice (ARP), an international standard certification guideline recognized by the Federal Aviation Administration (FAA), was analyzed. In addition, the guideline of lightning certification was applied to a PAV. The impact of lightning on PAV was also analyzed through computational software. Finally, the basis for the establishment of the PAV lightning certification guidance was presented.

A Study of Certification of Lightning Indirect Effects on Cable Harness in Personal Air Vehicles (PAV 케이블 하네스에 대한 낙뢰 간접 영향성 인증 기법에 관한 연구)

  • Jo, Jae-Hyeon;Kim, Yun-Gon;Park, Se-Woong;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.251-262
    • /
    • 2021
  • The airworthiness certification of lightning indirect effects becomes an important issue in personal air vehicles (PAVs), which are being actively developed around the world. PAVs are very vulnerable to lightning strikes, because of miniaturization, use of the electric engines, composite materials, and application of unmanned navigation systems. In this study, we first examined various steps of certifications for lightning indirect effects shown in AC 20 136B issued by the Federal Aviation Administration (FAA). We then applied certification guidelines for equipment transient design level listed in RTCA DO 160G Section 22 to PAVs and investigated lightning transient environments inside the PAVs. We also analyzed the aircraft level tests specified in SAE ARP 5416A by using electromagnetic computational analysis software EMA3D. Finally, we analyzed the actual transient level for PAVs and derived the data necessary for conformity certification.