• Title/Summary/Keyword: FA 콘크리트

Search Result 185, Processing Time 0.025 seconds

An Experimental Study on the Application of Fly Ash for Lining Concrete (라이닝콘크리트에서의 FA적용에 관한 실험적 연구)

  • 최세진;임정열;김완영;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.151-154
    • /
    • 1999
  • The lining concrete of water tunnel is a structure that is constructed to prevent from corroding of the rock around tunnel and reduce the deterioration of geology by flowing water, and to improve the durability of tunnel, which must not only economy, stability but also satisfy the engeneering properties of concrete. This is an experimental study to analyze th usability of fly in the tunnel lining concrete. For this purpose, after select the mix proportion of plain concrete and concrete using fly ash(the replacement of 15 and 30% by weight of cement) to satisfy slump, air content and compressive strength through the mix design, the test of slump, setting time, compressive strength, tensile strength, drying shrinkage and adiabatic temperature rise was performed. According to test results, it was found that FA 15 concrete was more effective than the others to reduce drying shrinkage as well satisfy other engineering properties.

  • PDF

Assessment on the Seawater Attack Resistance of Antiwashout Underwater Concrete (수중불분리성 콘크리트의 해수침식에 대한저항성 평가)

  • 문한영;김성수;안태송;이승태;김종필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.683-688
    • /
    • 2001
  • In case of constructing the concrete structures under seawater environment, the concrete suffers from deterioration due to penetration of various ions such as chloride, sulfate and magnesium in seawater. Tn the present study, Immersion tests with artificial seawater were carried out to investigate the resistance to seawater attack of antiwashout underwater concrete. From the results of compressive strength, it was found that blended cement concrete due to mineral admixtures such as fly ash(FA) and ground granulated blast-furnace slag(SGC), were superior to ordinary portland cement concrete with respect to the resistance to seawater attack. Moreover, XRD analysis indicated that the formed reactants of ordinary portland cement paste by sulfate and magnesium ions led to the deterioration of concrete. As expected, however, the blended cements with FA or SGC have a good resistance to seawater attack. This paper would discuss the mechanism of seawater deterioration and benefical effects of antiwashout underwater concretes with mineral admixtures.

  • PDF

A Experimental Study on the High Performance Concrete for Bridge Decks (고성능 콘크리트의 교량 바닥판 적용을 위한 실험적 연구)

  • Suh, Jin-Won;Rhee, Ji-Young;Cheong, Hai-Moon;Ku, Bon-Sung;Shin, Do-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.53-56
    • /
    • 2006
  • To develop more durable concrete deck, performance characteristic test of HPC(High Performance Concrete) mixtures was carried out. The parameters used in this project were ; the mineral admixture details were 4 types such as ordinary portland cement(OPC), 20% fly ash (FA), 20% fly ash and 4% silica fume(FS), and 40% ground granulated blast-furnace slag(BS). Their design compressive strengths were 27MPa and 35MPa respectively. The results showed the compressive strength of concrete did not much affect the durability of concrete. HPC with blast-furnace slag(BS) showed the good durability but was prone to crack. HPC with fly ash(FA) or with fly ash and silica fume(FS) had the good durability and crack resistance.

  • PDF

A Study on the Quality Properties of Exposed High Fluidity Concrete using Fly Ash and Limestone Powder (플라이애시 및 석회석 미분말을 사용한 고유동 노출 콘크리트의 품질특성에 관한 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Kim, Ji-Hoon;Kim, Kyung-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.67-75
    • /
    • 2013
  • Recently, the interest is increasing about the exposed concrete, accordingly, exposed concrete is expanding the use. However, concrete structures is difficult to apply the general concrete for exposed concrete, due to complex section and compact reinforcement, increasingly. Therefore, in this paper, for application of high fluidity concrete as exposed concrete, exposed high fluidity concrete using fly ash and lime stone powder was manufactured and observed quality property(fluidity properties, mechanical properties and Surface Properties) of exposed high fluidity concrete. The experiments are based on the OPC and LSP10, was evaluated Impact on the quality of concrete according to mixing ratio of FA(0, 10, 15 and 20). As a result, fluidity properties, mechanical properties and Surface Properties of exposed high fluidity concrete were satisfied to requirement conditions, fluidity and surface finishability was improved depending on mix of fly ash and limestone powder. Through this, we utilize of basic research data for development of high fluidity concrete for exposed concrete.

Influence of Fly Ash on Life-Cycle Environmental Impact of Concrete (플라이애시가 콘크리트의 전과정 환경영향에 미치는 효과)

  • Jung, Yeon-Back;Yang, Keun-Hyeok;Choi, Dong-Uk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.515-522
    • /
    • 2014
  • In order to quantitatively evaluate the effect of fly ash (FA) as partial replacement of cement on the life-cycle environmental impact of concrete, a comprehensive database including 4023 laboratory mixes and 2120 plant mixes was analyzed. The environmental loads on the life-cycle assessment were quantitatively converted into environmental impact indicators through categorization, characterization, normalization and weighting process. The life-cycle environmental impacts of concrete could be classified into three categories including global warming, photochemical oxidant creation and abiotic resource depletion. Furthermore, these environmental impacts of concrete was decreased with the increase of the replacement level of FA and governed by the unit content of ordinary portland cement (OPC). As a result, simple equations to assess the environmental impact indicators could be formulated as a function of the unit content of binder and the replacement level of FA.

Evaluation of Chloride Diffusion Characteristics in Concrete with Fly Ash Cured for 2 Years (2년 양생된 Fly Ash 콘크리트의 염화물 확산 특성 평가)

  • Yoon, Yong-Sik;Hwang, Sang-Hyeon;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.8-15
    • /
    • 2019
  • When RC(Reinforced Concrete) structures are exposed to harsh environment, deterioration phenomenon occurs, and the corrosion in rebar due to chloride intrusion is known as representative deterioration, so called chloride attack. In this paper, chloride resistance performance of 2 years aged concrete is evaluated considering 3 levels of water to binder ratio(0.37, 0.42, and 0.47) and 2 levels of substitution ratio of fly ash(0% and 30%). Accelerated chloride diffusion coefficient tests referred to Tang's method, total passed charge tests referred to ASTM C 1202, and compressive strength tests referred to KS F 2405 are performed. With adaptation of the previous test results and the results from this study, time-dependent chloride diffusion characteristics are analyzed for each concrete. The FA(Fly Ash) concrete has higher chloride resistance performance than OPC(Ordinary Portland Cement) concrete. According to the evaluation standard of ASTM C 1202, the FA concrete has "Moderate" grade after 49 days while OPC concrete does "Moderate" grade after 365 days. As the results of time-parameter for chloride diffusion, OPC concrete and FA concrete show the decreasing behavior of time-parameters with increasing water to binder ratio. Also, FA concrete has 1.57~2.74 times of time-parameter than OPC concrete. That's cause is thought that the time-parameter indicates the gradient of decreasing of diffusion coefficient. FA concrete has higher time-parameters than OPC concrete by pozzolanic reaction of FA.

The Method of Thermal Crack Control about the LNG Tank Wall in Winter (LNG 저장탱크 벽체의 동절기 온도균열제어 방안)

  • Son, Young-Jun;Ha, Jae-Dam;Um, Tai-Sun;Lee, Jong-Ryul;Baek, Seung-Jun;Park, Chan-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.637-640
    • /
    • 2008
  • Since the first underground LNG tank was constructed in Incheon, continuously many LNG tanks were constructed in Tongyoung and Pyongtaek. The storage capacity of LNG tank increased by 200,000kl and the structure size and the concrete mixing design has changed. The crack of concrete induced by the heat of hydration is a serious problem, particularly in massive concrete structures. In order to control the thermal crack of massive concrete, the low heat portland cement(type Ⅳ) is applied to bottom annular part, bottom central part, lower walls and ring beam. In this study, in order to thermal crack control about the LNG tank wall(lot 8 of #16 Pyongtaek LNG tank) in winter, analysed the concrete temperature, the extention of term, the curing condition and the concrete mixing design. When the concrete mixing design is changed from OPC+FA25% to LHC+FA25%, the thermal crack index is 1.33 and satisfied with construction specifications(over 1.2).

  • PDF

Investigation on the Fundamental Properties and the Hydration Heat of Concrete Using High Volume Mineral Admixture (혼화재 다량 치환에 따른 콘크리트 기초적 특성 및 수화열 검토)

  • Song, Yong-Won;Yoon, Seob;Jeong, Yong;Lee, Sung-Woong;Gong, Min-Ho;Chung, Gi-Taek
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.257-258
    • /
    • 2010
  • The research was investigated the hydration heat and the fundamental properties of concrete using high volume mineral admixture for reducing hydration heat temperature. The results were that compared to OPC 100%, the dosage of superpasticizer agents was decreased about 50% degree at the same flowing, and the compressive strength was developed about 95% degree. Also, temperature rise of heat of hydration was decreased by 36~48% comparing to OPC and FA25, and it is estimated that it will have a large effect to hydration heat reduction of mass concrete.

  • PDF

Prediction of Deformation of Shear Reinforcement and Shear Crack Width of Reinforced Concrete Members using Truss Models (트러스 모델을 이용한 철근콘크리트 부재의 전단철근 및 전단균열폭의 변형 예측)

  • Kim, Sang-Woo;Lee, Jung-Yoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.3 s.13
    • /
    • pp.49-56
    • /
    • 2004
  • This paper predicted the shear deformation, such as strain of shear reinforcement and shear track width, of reinforced concrete (RC) members using Transformation Angle Truss Model (TATM) in order to apply to the shea, analysis of RC buildings. To check the validity of TATM for the shear deformation of RC beams, four RC beams with different shear span-to-depth ratios were cast, instrumented and tested. Observed results were compared with theoretical results by MCFT(Response-2000), RA-STM, FA-STM, and TATM. The proposed model, TATM, better predicted the relationships of the shear stress-strain of shear reinforcement and the shear stress-shear track width than other truss models.

  • PDF

Evaluation of Apparent Chloride Diffusion Coefficient and Surface Chloride Contents of FA concrete Exposed Splash zone Considering Crack Width (비말 지역에 노출된 FA 콘크리트의 균열을 고려한 겉보기 염화물 확산계수 및 표면 염화물량 평가)

  • Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.18-25
    • /
    • 2019
  • The cracks occurred during service life of concrete structure should be considered in durability design, because of the concrete's material property which is weak in tensile strength. In this study, the fly ash concrete mixtures considering 2 levels of strength is designed and outdoor exposure tests are conducted for those concrete specimens. The exposure environment is set to a splash zone, and in order to evaluate the effect of crack width on the behavior of chloride diffusion, the crack width of up to 1.0 mm is generated at intervals of 0.1 mm at each concrete mixture. After that, apparent chloride diffusion coefficient and surface chloride contents are deducted considering 3 levels of exposure periods(180 days, 365 days, 730 days). The diffusion coefficients of two types of mixture increase with the increase of crack width, and the diffusion coefficients decrease with the increase of exposure periods. In addition, the effect of the crack width on the diffusion coefficient is reduced as the exposure periods increase, which is attributed to the extra hydrate by chloride ion reducing the diffusivity of concrete. The behavior of the surface chloride contents does not significantly change by the increase in crack width, compared to the behavior of apparent chloride diffusion coefficient. Also, In the high strength FA concrete mixture, the surface chloride contents are 78.9 % ~ 90.7 % than the normal FA strength concrete mixture. Thus, Surface chloride contents have correlation with the strength of concrete.