• Title/Summary/Keyword: F-reduction

Search Result 1,356, Processing Time 0.036 seconds

Performance of the RI Exhaust Filter at Chosun University Cyclotron Facility and 18F Emission Reduction (조선대학교 사이클로트론 시설의 RI 배기필터 성능평가 및 18F 배출저감 연구)

  • Jeong, Cheol-Ki;Jang, Han;Lee, Goung-Jin
    • Journal of Radiation Industry
    • /
    • v.11 no.1
    • /
    • pp.13-18
    • /
    • 2017
  • Recently, the number of PET cyclotrons has increased in Korea. A cyclotron mainly produces $^{18}F$, which is used for the production of [$^{18}F$]FDG, a cancer diagnostic radiopharmaceutical. For radiation protection, the discharge control standard under the Nuclear Safety Act limits the radioactive concentration of $^{18}F$ in the exhaust discharged from a nuclear power utilization facility to below $2,000Bq\;m^{-3}$. However, the radioactive concentration of $^{18}F$ discharged during [$^{18}F$]FDG production at the cyclotron facility at Chosun University is maintained at about $1,500Bq\;m^{-3}$ on average, which is 75% of the concentration limit of the discharge control standard, and temporarily exceeds the standard as per the real-time monitoring results. This study evaluated the performance of the exhaust filter unit of the cyclotron facility at Chosun University by assessing the concentration of $^{18}F$ in the exhaust, and an experiment was conducted on the discharge reduction, where $^{18}F$ is discharged without reacting with the FDG precursors during [$^{18}F$]FDG synthesis and is immediately captured by the [$^{18}F$]FDG automatic synthesis unit. Based on the performance evaluation results of the exhaust filter at the cyclotron facility of Chosun University, the measured capture efficiency before and after the filter was found to be 92%. Furthermore, the results of the discharge reduction experiment, where the exhaust $^{18}F$ was immediately captured by the [$^{18}F$]FDG synthesizer, showed a very satisfactory 94.3% reduction in the concentration of discharge compared to the existing discharge concentration.

ZanF를 이용한 질산성 질소 환원 및 암모늄부산물 동시제거

  • 이승학;이광헌;이성수;박준범
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.107-110
    • /
    • 2003
  • Reduction of nitrate by zero valent iron (Fe$^{0}$ ) has been previously studied, but the proper treatment for the by-product of ammonium has not been reported. However, in terms of nitrogen contamination, ammonium may be regarded as another form of nitrogen contaminants since it can be oxidized to nitrate again under aerobic conditions. This study is focused on simultaneous removal of nitrate and its by-product of ammonium, with the ZanF (Zeolite anchored Fe), a product derived from zeolite modified by Fe(II) chloride followed by reduction with sodium borohydride. Batch experiments were performed without buffer at two different pH condition with ZanF, iron filing, Fe(II)-sorbed zeolite, and pure zeolite to estimate the nitrate reduction and the ammonium production. At higher pH, removal rate of nitrate was reduced in both ZanF and iron filings. ZnF removed 60 % of nitrate at initial pH of 3.3 with no production of ammonium, while iron filing showed equivalent production of ammonium to the reduced amount of nitrate. In terms of nitrogen contamination, ZanF removed about 60 % and 40 % at initial pH of 3.3 and 6, respectively, while iron filing presented negligible removal against total nitrogen including nitrate and ammonium.

  • PDF

Reduction Formulas for Srivastava's Triple Hypergeometric Series F(3)[x, y, z]

  • CHOI, JUNESANG;WANG, XIAOXIA;RATHIE, ARJUN K.
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.439-447
    • /
    • 2015
  • Very recently the authors have obtained a very interesting reduction formula for the Srivastava's triple hypergeometric series $F^{(3)}$(x, y, z) by applying the so-called Beta integral method to the Henrici's triple product formula for the hypergeometric series. In this sequel, we also present three more interesting reduction formulas for the function $F^{(3)}$(x, y, z) by using the well known identities due to Bailey and Ramanujan. The results established here are simple, easily derived and (potentially) useful.

Re-evaluation of [18F]fluorobenzaldehyde as a prosthetic group

  • Choe, Yearn Seong
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.2
    • /
    • pp.75-79
    • /
    • 2015
  • [$^{18}F$]Fluorobenzaldehyde, which is a versatile radioactive prosthetic group, can undergo reduction, reductive amination, or oxidation to be used for synthesis of diverse radiotracers. This review covers synthesis of [$^{18}F$]fluorobenzaldehyde and its conversion to secondary prosthetic groups, and also highlights its application to the development of radiotracers.

Synthesis of α-oximinoketones, Precursor of CO2 Reduction Macrocyclic Coenzyme F430 Model Complexes

  • Kim, Gilhoon;Won, Hoshik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.4
    • /
    • pp.139-144
    • /
    • 2017
  • Ni(II) containing coenzyme F430 catalyzes the reduction of $CO_2$ in methanogen. Macrocyclic Ni(II) complexes with N,O shiff bases have been received a great attention since metal ions play an important role in the catalysis of reduction. The reducing power of metal complexes are supposed to be dependent on oxidoreduction state of metal ion and structural properties of macrocyclic ring moiety that can enhance electrochemical properties in catalytic process. Six different ${\alpha}$-oximinoketone compounds, precursor of macrocyclic ligands used in $CO_2$ reduction coenzyme F430 model complexes, were synthesized with yields over 90% and characterized by NMR. The molecular geometries of ${\alpha}$-oximinoketone analogues were fully optimized at Beck's-three-parameter hybrid (B3LYP) method in density functional theory (DFT) method with $6-31+G^*$ basis set using the ab initio program. In order to understand molecular planarity and substitutional effects that may enhance reducing power of metal ion are studied by computing the structure-dependent $^{13}C$-NMR chemical shift and comparing with experimental results.

Experimental Study on the Application of Concrete Admixture using the EAF Reduction Slag (전기로 환원 슬래그 미분말의 콘크리트용 혼화재 적용성에 관한 실험적 연구)

  • Choi, Jae-Seok;Jang, Pil-Sung;Jo, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6890-6897
    • /
    • 2014
  • EAF reduction slag has unstable properties of expansion and destruction. Therefore, it cannot be used as a construction material. The purpose of this study was to use EAF reduction slag as a concrete admixture. EAF reduction slag contains $11CaO{\cdot}7Al_2O_3{\cdot}CaF_2$ and ${\beta}-C_2S$ (calcium aluminate compounds). To confirm the properties of EAF reduction slag as a concrete admixture, the condensation, compressive strength and activity factor due to substitution rate of EAF reduction slag were measured. Originally, EAF reduction slag was cured rapidly because of its chemical composition ($11CaO{\cdot}7Al_2O_3{\cdot}CaF_2$). On the other hand, when 8% gypsum was added, its properties of condensation and compressive strength were similar to the plain specimen. When 6% gypsum was added, the quality of the KS F 2536 standards (quality standard number 3) were met in terms of activity factor. Overall, 8% gypsum addition is the most appropriate by considering the activity factor in the long-term compressive strength.

Reduction Efficiency of Cr(VI) in Aqueous Solution by Different Sources of Zero-Valent Irons (수용액 중 영가 철(Zero-Valent Iron)의 특성에 따른 Cr(VI)의 환원 효율 비교)

  • Yang, Jae-E.;Kim, Jong-Sung;Ok, Yong-Sik;Yoo, Kyung-Yoal
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.203-209
    • /
    • 2005
  • Objective of this research was to assess the effectiveness of the different sources of the zero-valent irons (ZVIs) on the reduction of the toxic Cr(VI) to the nonhazardous Cr(III) in an aqueous solution. The physical and chemical properties of the six ZVIs were determined. Particle size and specific surface area of the ZVIs were in the ranges of $85.55{\sim}196.46{\mu}m\;and\;0.055{\sim}0.091m^2/g$, respectively. Most of the ZVIs contained Fe greater than 98% except for J (93%) and PU (88%). Reduction efficiencies of the ZVI for Cr(VI) reduction were varied with kinds of ZVIs. The J and PU ZVIs reduced 100% and 98% of Cr(VI) in the aqueous solution, respectively, within 3 hrs of reaction. However, PA, F, Sand J1 reduced 74, 65, 29 and 11% of Cr(VI), respectively, after 48 hrs. The pH of the reacting solution was rapidly increased from 3 to $4.34{\sim}9.04$ within 3 hrs. The oxidation-reduction potential (Eh) of the reacting solution was dropped from 600 to 319 mV within 3 hrs following addition of ZVIs to the Cr(VI) contaminated water. The capability of ZVIs for Cr(VI) reduction was the orders of PU > J > PA > F > S > J1, which coincided with the capacities to increase the pH and decrease the redox potentials. Results suggested that the reduction of Cr(VI) to Cr(III) was derived from the oxidation of the ZVI in the aqueous solution.

Optimized Binary Field Reduction Algorithm on 8-bit ATmega128 Processor (8-bit ATmega128 프로세서 환경에 최적화된 이진체 감산 알고리즘)

  • Park, Dong-Won;Kwon, Heetaek;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.2
    • /
    • pp.241-251
    • /
    • 2015
  • In public-key cryptographic system based on finite field arithmetic, it is very important to challenge for implementing high speed operation. In this paper, we focused on 8-bit ATmega128 processor and concentrated on enhancing efficiency of reduction operation which uses irreducible polynomial $f(x)=x^{271}+x^{207}+x^{175}+x^{111}+1$ and $f(x)=x^{193}+x^{145}+x^{129}+x^{113}+1$. We propose optimized reduction algorithms which are designed to reduce repeated memory accesses by calculating final reduced values of Fast reduction. There are 53%, 55% improvement when proposed algorithm is implemented using assembly language, compare to previous Fast reduction algorithm.

Preparation of Niobium Powders by Sodiothermic Reduction of K2NbF7 (K2NbF7로부터 Na 열환원 공정에 의한 니오븀 분말의 제조)

  • Yoon, Jae-Sik
    • Korean Journal of Materials Research
    • /
    • v.19 no.7
    • /
    • pp.386-390
    • /
    • 2009
  • Niobium(Nb) and Tantalum(Ta) are rarely found apart in nature and never in the free state. The element niobium amounts to 3% of the crustal abundance. On the whole, the niobium capacitor showed somewhat more unstable characteristics than the commercial tantalum capacitors, but is nonetheless considered applicable as a future substitute for tantalum capacitors. In this study, niobium powder was made from potassium heptafluoroniobite($K_2NbF_7$) by using sodium(Na) as a reductant and KCl and KF as diluents based on the hunter sodiothermic reduction method.,In order to obtain a high surface area niobium powder via the sodiothermic reduction method, a certain amount of diluent, such as alkali metal halides selected from NaCl, KCl, KF and NaF, was added in the raw materials to be reduced. However, if a higher surface area of powder is required, more diluents need to be used in the said method in order to produce niobium powder. But when more diluents are used, the niobium powder will be contaminated with more impurities and the yield will also decreased.