• Title/Summary/Keyword: Extract ROI

Search Result 61, Processing Time 0.021 seconds

Automatic Extraction and Preferred Processing of ROI in JPEG2000 (JPEG2000에서 ROI의 자동 추출과 우선적 처리)

  • Park, Jae-Heung;Seo, Yeong-Geon;Kim, Sang-Bok;Kang, Ki-Jun;Kim, Ho-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.127-136
    • /
    • 2008
  • A digitized image passes by encoding, storing or transmitting to show it to users. In this process, may be users would want to see a specific region of the image. And depending on the system features or in the case that the resolution of the image is large, it will take a huge time that the image show to the users. In this time, it will be resonable that the part users want to see shows earlier and afterward the other parts show. For this, JPEG2000 standards provide ROI. Although ROI extraction that users specify ROI arbitrarily is the best, people not always participate in doing all the images. There needs an automatic ROI extracting and storing in some images. JPEG2000 should extract and send an ROI automatically when the images is encoded without ROI. This study proposes a method that automatically extracts an ROI, makes the ROI masks, transfers the masked image preferentially and the background. And the study compares and experiments the proposed method and the method not having ROI.

  • PDF

Auto Correction Technique of Photography Composition Using ROI Extraction Method (ROI 추출을 통한 사진 구도 자동 보정 기법)

  • Ha, Ho-Saeng;Park, Dae-Hyun;Kim, Yoon
    • Journal of Information Technology and Architecture
    • /
    • v.10 no.1
    • /
    • pp.113-122
    • /
    • 2013
  • In this paper, we propose the method that automatically corrects the composition of a picture stylishly as well as reliably by cropping pictures based on the Rule of Thirds. The region of interest (ROI) is extracted from a picture by applying the Saliency Map and the Image Segmentation technology, the composition of the photo is amended based on this area to satisfy the Rule of Thirds. In addition, since the face region of the person is added to ROI by the Face Detection technique and the composition is amended by the various scenario according to ROI, the little more natural picture is acquired. The experimental result shows that the photo of the corrected composition was naturally amended compared with the original photo.

Extraction of Blood Flow of Brachial Artery on Color Doppler Ultrasonography by Using 4-Directional Contour Tracking and K-Means Algorithm (4 방향 윤곽선 추적과 K-Means 알고리즘을 이용한 색조 도플러 초음파 영상에서 상환 동맥의 혈류 영역 추출)

  • Park, Joonsung;Kim, Kwang Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1411-1416
    • /
    • 2020
  • In this paper, we propose a method of extraction analysis of blood flow area on color doppler ultrasonography by using 4-directional contour tracking and K-Means algorithm. In the proposed method, ROI is extracted and a binarization method with maximum contrast as a threshold is applied to the extracted ROI. 4-directional contour algorithm is applied to extract the trapezoid shaped region which has blood flow area of brachial artery from the binarized ROI. K-Means based quantization is then applied to accurately extract the blood flow area of brachial artery from the trapezoid shaped region. In experiment, the proposed method successfully extracts the target area in 28 out of 30 cases (93.3%) with field expert's verification. And comparison analysis of proposed K-Means based blood flow area extraction on 30 color doppler ultrasonography and brachial artery blood flow ultrasonography provided by a specialist yielded a result of 94.27% accuracy on average.

Motion-based ROI Extraction with a Standard Angle-of-View from High Resolution Fisheye Image (고해상도 어안렌즈 영상에서 움직임기반의 표준 화각 ROI 검출기법)

  • Ryu, Ar-Chim;Han, Kyu-Phil
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.3
    • /
    • pp.395-401
    • /
    • 2020
  • In this paper, a motion-based ROI extraction algorithm from a high resolution fisheye image is proposed for multi-view monitoring systems. Lately fisheye cameras are widely used because of the wide angle-of-view and they basically provide a lens correction functionality as well as various viewing modes. However, since the distortion-free angle of conventional algorithms is quite narrow due to the severe distortion ratio, there are lots of unintentional dead areas and they require much computation time in finding undistorted coordinates. Thus, the proposed algorithm adopts an image decimation and a motion detection methods, that can extract the undistorted ROI image with a standard angle-of-view for the fast and intelligent surveillance system. In addition, a mesh-type ROI is presented to reduce the lens correction time, so that this independent ROI scheme can parallelize and maximize the processor's utilization.

Destination address block locating algorithm for automatic classification of packages (택배 자동 분류를 위한 주소영역 검출 알고리즘)

  • Kim, Bong-Seok;Kim, Seung-Jin;Jung, Yoon-Su;Im, Sung-Woon;Ro, Chul-Kyun;Won, Chul-Ho;Cho, Jin-Ho;Lee, Kuhn-Il
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.128-138
    • /
    • 2003
  • In this paper, we proposed the algorithm for locating destination address block (DAB) from automatic system to classify packages. For locating DAB, because the size of obtained images is are very large, we select the region of interesting (ROI) to reduce time carrying into algorithm. After selecting the ROI, proposed algorithm is carried out within the ROI. We extract the outline of the handwriting part of the DAB and the rest components within the obtained ROI using thresholding. We carry out labeling to extract each connected component for extracted outline and the rest components. We extract the outline of the handwriting part of the DAB using the geometrical characteristic of the outline of the handwriting part of the DAB among many connected components. The last, we extract the locating DAB using the outline of the handwriting part of the DAB.

Optimal ROI Determination for Obtaining PPG Signals from a Camera on a Smartphone

  • Lee, Keonsoo;Nam, Yunyoung
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1371-1376
    • /
    • 2018
  • Photoplethysmography (PPG) is a convenient method for monitoring a heart rhythm. In addition to specialized devices, smartphones can be used to obtain PPG signals. However, as smartphones are not intended for this purpose, optimization is required to efficiently obtain PPG signals. Determining the optimal region of interest (ROI) is one such optimization method. There are two significant advantages in employing an optimized ROI. One is that the computing load is decreased by reducing the image size used to extract the PPG signal. The other is that stronger and more reliable PPG signals are obtained by removing noisy regions. In this paper, we propose an optimal ROI determination method by recursively splitting regions to locate the region that produces the strongest PPG signal.

Palmprint Verification Using the Histogram of Local Binary Patterns (국부 이진패턴 히스토그램을 이용한 장문인식)

  • Kim, Min-Ki
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.10
    • /
    • pp.27-34
    • /
    • 2010
  • This paper proposes an efficient method for verifying palmprint which is captured at the natural interface without any physical restriction. The location and orientation of the region of interest (ROI) in palm images are variously appeared due to the translation and rotation of hand. Therefore, it is necessary to extract the ROI stably for palmprint recognition. This paper presents a method that can extract the ROI, which is based on the reference points that are located at the center of the crotch segments between index finger and middle finger and between ring finger and little finger. It also proposes a palmprint recognition method using the histogram of local binary patterns (LBP). Experiments for evaluating the performance of the proposed method were performed on 1,597 palmprint images acquired from 100 different persons. The experimental results showed that ROI was correctly extracted at the rate of 99.5% and the equal error rate (EER) and the decidability index d' indicating the performance of palmprint verification were 0.136 and 3.539, respectively. These results demonstrate that the proposed method is robust to the variations of the translation and rotation of hand.

The Extraction of ROI(Region Of Interest)s Using Noise Filtering Algorithm Based on Domain Heuristic Knowledge in Breast Ultrasound Image (유방 초음파 영상에서 도메인 경험 지식 기반의 노이즈 필터링 알고리즘을 이용한 ROI(Region Of Interest) 추출)

  • Koo, Lock-Jo;Jung, In-Sung;Choi, Sung-Wook;Park, Hee-Boong;Wang, Gi-Nam
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.1
    • /
    • pp.74-82
    • /
    • 2008
  • The objective of this paper is to remove noises of image based on the heuristic noises filter and to extract a tumor region by using morphology techniques in breast ultrasound image. Similar objective studies have been conducted based on ultrasound image of high resolution. As a result, efficiency of noise removal is not fine enough for low resolution image. Moreover, when ultrasound image has multiple tumors, the extraction of ROI (Region Of Interest) is not accomplished or processed by a manual selection. In this paper, our method is done 4 kinds of process for noises removal and the extraction of ROI for solving problems of restrictive automated segmentation. First process is that pixel value is acquired as matrix type. Second process is a image preprocessing phase that is aimed to maximize a contrast of image and prevent a leak of personal information. In next process, the heuristic noise filter that is based on opinion of medical specialist is applied to remove noises. The last process is to extract a tumor region by using morphology techniques. As a result, the noise is effectively eliminated in all images and a extraction of tumor regions is possible though one ultrasound image has several tumors.

Automatic Extraction and Coding of Multi-ROI (다중 관심영역의 자동 추출 및 부호화 방법)

  • Seo, Yeong-Geon;Hong, Do-Soon;Park, Jae-Heung
    • Journal of Digital Contents Society
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • JPEG2000 offers the technique which compresses the interested regions with higher quality than the background. It is called by an ROI(Region-of-Interest) coding method. In this paper, we use images including the human faces, which are processed uppermost and compressed with high quality. The proposed method consists of 2 steps. The first step extracts some faces and the second one is ROI coding. To extract the faces, the method cuts or scale-downs some regions with $20{\times}20$ window pixels for all the pixels of the image, and after preprocessing, recognizes the faces using neural networks. Each extracted region is identified by ROI mask and then ROI-coded using Maxshift method. After then, the image is compressed and saved using EBCOT. The existing methods searched the ROI by edge distributions. On the contrary, the proposed method uses human intellect. And the experiment shows that the method is sufficiently useful with images having several human faces.

Algorithm for Extract Region of Interest Using Fast Binary Image Processing (고속 이진화 영상처리를 이용한 관심영역 추출 알고리즘)

  • Cho, Young-bok;Woo, Sung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.634-640
    • /
    • 2018
  • In this paper, we propose an automatic extraction algorithm of region of interest(ROI) based on medical x-ray images. The proposed algorithm uses segmentation, feature extraction, and reference image matching to detect lesion sites in the input image. The extracted region is searched for matching lesion images in the reference DB, and the matched results are automatically extracted using the Kalman filter based fitness feedback. The proposed algorithm is extracts the contour of the left hand image for extract growth plate based on the left x-ray input image. It creates a candidate region using multi scale Hessian-matrix based sessionization. As a result, the proposed algorithm was able to split rapidly in 0.02 seconds during the ROI segmentation phase, also when extracting ROI based on segmented image 0.53, the reinforcement phase was able to perform very accurate image segmentation in 0.49 seconds.