• 제목/요약/키워드: Extracellular protein

검색결과 1,168건 처리시간 0.024초

High-yield Expression and Characterization of Syndecan-4 Extracellular, Transmembrane and Cytoplasmic Domains

  • Choi, Sung-Sub;Kim, Ji-Sun;Song, Jooyoung;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1120-1126
    • /
    • 2013
  • The syndecan family consists of four transmembrane heparan sulfate proteoglycans present in most cell types and each syndecan shares a common structure containing a heparan sulfate modified extracellular domain, a single transmembrane domain and a C-terminal cytoplasmic domain. To get a better understanding of the mechanism and function of syndecan-4 which is one of the syndecan family, it is crucial to investigate its three-dimensional structure. Unfortunately, it is difficult to prepare the peptide because it is membrane-bound protein that transverses the lipid bilayer of the cell membrane. Here, we optimize the expression, purification, and characterization of transmembrane, cytoplasmic and short extracellular domains of syndecan4 (syndecan-4 eTC). Syndecan-4 eTC was successfully obtained with high purity and yield from the M9 medium. The structural information of syndecan-4 eTC was investigated by MALDI-TOF mass (MS) spectrometry, circular dichroism (CD) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. It was confirmed that syndecan-4 eTC had an ${\alpha}$-helical multimeric structure like transmembrane domain of syndecan-4 (syndecan-4 TM) in membrane environments.

딸기 검은무늬병균이 생산하는 기주특이성 AF 독소 I이 딸기 원형질체의 단백질 합성과 세포외 다당체 축적에 미치는 영향 (Effect of Host-Specific AF-Toxin I Produced by the Strawberry Pathotype of Alternaria alternata on Protein Synthesis in Strawberry Protoplasts)

  • 이성숙;쯔게다까시
    • 한국식물병리학회지
    • /
    • 제11권4호
    • /
    • pp.318-323
    • /
    • 1995
  • The effect of AF-toxin I produced by the strawberry pathotype of Alternaria alternata on the protein synthesis of susceptible strawberry protoplasts was examined by using the radiolabeled amino acids. The incorporation of the radiolabeled amino acids into newly synthesized proteins in the strawberry protoplasts was stimulated by the toxin treatment at relatively low concentrations (2.2$\times$10-11 to 2.2$\times$10-9 M), but not at higher concentrations (2.2$\times$10-8 to 2.2$\times$10-6 M). An one-dimensional SDS-polyacrylamide gel electrophoresis revealed no detectable differences in the proteins synthesized in both the toxintreated and untreated protoplasts. The susceptible strawberry protoplasts were treated with AF-toxin I and stained with Fluostain I to detect the extracellular polysaccharides. The toxin treatment induced the accumulation of extracellular polysccharides in a dose-dependent manner. These results indicate a transient activation of cellular metabolism in the susceptible cells by the toxin exposure.

  • PDF

Bacillus sp. WY-60이 생산한 균체외 단백질의 특성 (Properties of the Extracellular Proteins Produced by Bacillus sp. WY-60)

  • 권오진;박신
    • 한국식품영양과학회지
    • /
    • 제22권6호
    • /
    • pp.807-810
    • /
    • 1993
  • Extracellular proteins of Bacillus sp. WY-60 were obtained, and then the properties of the isolated proteins were characterized. The proteins were composed of two kinds of protein in size. The molecular weight of the major protein was around 21,000 according to the gel filtration chromatography and SDS-polyacryamide gel electrophoresis. The amino acid composition showed that glutamic acid was a major amino acid with the concentration of 26.16mg/g. The isoelectric point of the proteins was about pH 7.5.

  • PDF

Increase in Intracellular Calcium is Necessary for RANKL Induction by High Extracellular Calcium

  • Jun, Ji-Hae;Kim, Hyung-Keun;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • 제30권1호
    • /
    • pp.9-15
    • /
    • 2005
  • Recently, we reported that high extracellular calcium increased receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) expression via p44/42 mitogen-activated protein kinase (p44/42 MAPK) activation in mouse osteoblasts. However, the mechanism for p44/42 MAPK activation by high extracellular calcium is unclear. In this study, we examined the role of intracellular calcium increase in high extracellular calcium-induced RANKL induction and p44/42 MAPK activation. Primary cultured mouse calvarial osteoblasts were used. RANKL expression was highly induced by 10 mM calcium treatment. Ionomycin, a calcium ionophore, also increased RANKL expression and activated p44/42 MAPK. U0126, an inhibitor of MEK1/2, an upstream activator of p44/42 MAPK, blocked the RANKL induction by both high extracellular calcium and ionomycin. High extracellular calcium increased the phosphorylation of proline-rich tyrosine kinase 2 (Pyk2), one of the known upstream regulators of p44/42 MAPK activation. Bisindolylmaleimide, an inhibitor of protein kinase C, did not block RANKL induction and p44/42 MAPK activation induced by high extracellular calcium. 2-Aminoethoxydiphenyl borate, an inhibitor of inositol 1,4,5-trisphosphate (IP3) receptor, blocked the RANKL induction by high extracellular calcium. It also partially suppressed the activation of Pyk2 and p44/42 MAPK. Cyclosporin A, an inhibitor of calcineurin, also inhibited high calcium-induced RANKL expression in dose dependent manner. However, cyclosporin A did not affect the activation of Pyk2 and p44/42 MAPK by high extracellular calcium treatment. These results suggest that 1) the increase in intracellular calcium via IP3-mediated calcium release is necessary for RANKL induction by high extracellular calcium treatment, 2) Pyk2 activation, but not protein kinase C, following the increase in intracellular calcium might be involved in p44/42 MAPK activation, and 3) calcineurin-NFAT activation by the increase in intracellular calcium is involved in RANKL induction by high extracellular calcium treatment.

Nucleocapsid and Spike Proteins of SARS-CoV-2 Drive Neutrophil Extracellular Trap Formation

  • Young-Jin Youn;Yu-Bin Lee;Sun-Hwa Kim;Hee Kyung Jin;Jae-sung Bae;Chang-Won Hong
    • IMMUNE NETWORK
    • /
    • 제21권2호
    • /
    • pp.16.1-16.8
    • /
    • 2021
  • Patients with severe coronavirus disease 2019 (COVID-19) demonstrate dysregulated immune responses including exacerbated neutrophil functions. Massive neutrophil infiltrations accompanying neutrophil extracellular trap (NET) formations are also observed in patients with severe COVID-19. However, the mechanism underlying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced NET formation has not yet been elucidated. Here we show that 2 viral proteins encoded by SARS-CoV-2, the nucleocapsid protein and the whole spike protein, induce NET formation from neutrophils. NET formation was ROSindependent and was completely inhibited by the spleen tyrosine kinase inhibition. The inhibition of p38 MAPK, protein kinase C, and JNK signaling pathways also inhibited viral protein-induced NET formation. Our findings demonstrate one method by which SARSCoV-2 evades innate immunity and provide a potential target for therapeutics to treat patients with severe COVID-19.

Expression of Extracellular Superoxide Dismutase Protein in Diabetes

  • Kim, Chul Han
    • Archives of Plastic Surgery
    • /
    • 제40권5호
    • /
    • pp.517-521
    • /
    • 2013
  • Background Diabetes is characterized by chronic hyperglycemia, which can increase reactive oxygen species (ROS) production by the mitochondrial electron transport chain. The formation of ROS induces oxidative stress and activates oxidative damage-inducing genes in cells. No research has been published on oxidative damage-related extracellular superoxide dismutase (EC-SOD) protein levels in human diabetic skin. We investigated the expression of EC-SOD in diabetic skin compared with normal skin tissue in vivo. Methods The expression of EC-SOD protein was evaluated by western blotting in 6 diabetic skin tissue samples and 6 normal skin samples. Immunohistochemical staining was also carried out to confirm the EC-SOD expression level in the 6 diabetic skin tissue samples. Results The western blotting showed significantly lower EC-SOD protein expression in the diabetic skin tissue than in the normal tissue. Immunohistochemical examination of EC-SOD protein expression supported the western blotting analysis. Conclusions Diabetic skin tissues express a relatively small amount of EC-SOD protein and may not be protected against oxidative stress. We believe that EC-SOD is related to the altered metabolic state in diabetic skin, which elevates ROS production.

Adhesive Properties, Extracellular Protein Production, and Metabolism in the Lactobacillus rhamnosus GG Strain when Grown in the Presence of Mucin

  • Sanchez, Borja;Saad, Naima;Schmitter, Jean-Marie;Bressollier, Philippe;Urdaci, Maria C.
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권6호
    • /
    • pp.978-984
    • /
    • 2010
  • This paper examines the probiotic bacterium Lactobacillus rhamnosus GG, and how it reacts to the presence of mucin in its extracellular milieu. Parameters studied included cell clustering, adhesion to mucin, extracellular protein production, and formation of final metabolites. L. rhamnosus GG was found to grow efficiently in the presence of glucose, N-acetylglucosamine, or mucin (partially purified or purified) as sole carbon sources. However, it was unable to grow using other mucin constituents, such as fucose or glucuronic acid. Mucin induced noticeable changes in all the parameters studied when compared with growth using glucose, including in the formation of cell clusters, which were easily disorganized with trypsin. Mucin increased adhesion of the bacterium, and modulated the production of extracellular proteins. SDS-PAGE revealed that mucin was not degraded during L. rhamnosus GG growth, suggesting that this bacterium is able to partially use the glucidic moiety of glycoprotein. This study goes some way towards developing an understanding of the metabolic and physiological changes that L. rhamnosus GG undergoes within the human gastrointestinal tract.

Bacillus sp. WY-60에 의한 균체외 단백질의 분비조건 (Production of extracellular protein from Bacillus sp. WY-60)

  • 박신;권오진
    • Applied Biological Chemistry
    • /
    • 제36권1호
    • /
    • pp.11-16
    • /
    • 1993
  • 미생물에 의한 균체외 단백질의 생산 및 그 분비조건에 관한 기초자료를 얻기 위해 토양으로 부터 단백질 생산균주 11주를 분리하여 그 중 단백질 생산능이 강한 WY-60 균주를 선정하여 동정한 결과, Bacillus sp.으로 확인되었다. WY-60 균주의 단백질생산 최적조건은 fructose 4.0%, polypeptone 1.0%, $NH_4NO_3$ 0.1%, $K_2HPO_4$ 0.1%, $MgSO_4{\cdot}7H_2O$ 0.005%, $CaCO_3$ 1.0%, pH 8.0 및 온도 $30^{\circ}C$이였다. WY-60 균주는 penicillin G와 lincomycin을 첨가시에 단백질 생산을 촉진하였고 그 외의 항생물질의 첨가시는 단백질 생산을 증가하는 효과가 없었다. 배양시간에 따른 단백질 생산은 배양 5일째에 0.214 mg/ml로 최대가 되었다.

  • PDF

Extracellular Nucleotides Can Induce Chemokine (C-C motif) Ligand 2 Expression in Human Vascular Smooth Muscle Cells

  • Kim, Jeung-Il;Kim, Hye-Young;Kim, Sun-Mi;Lee, Sae-A;Son, Yong-Hae;Eo, Seong-Kug;Rhim, Byung-Yong;Kim, Koanhoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권1호
    • /
    • pp.31-36
    • /
    • 2011
  • To understand the roles of purinergic receptors and cellular molecules below the receptors in the vascular inflammatory response, we determined if extracellular nucleotides up-regulated chemokine expression in vascular smooth muscle cells (VSMCs). Human aortic smooth muscle cells (AoSMCs) abundantly express $PSY_1$, $PSY_6$, and $PSY_{11}$ receptors, which all respond to extracellular nucleotides. Exposure of human AoSMCs to $NAD^+$, an agonist of the human $PSY_{11}$ receptor, and $NADP^+$ as well as ATP, an agonist for $PSY_1$ and $PSY_{11}$ receptors, caused increase in chemokine (C-C motif) ligand 2 gene (CCL2) transcript and CCL2 release; however, UPT did not affect CCL2 expression. CCL2 release by $NAD^+$ and $NADP^+$ was inhibited by a concentration dependent manner by suramin, an antagonist of P2-purinergic receptors. $NAD^+$ and $NADP^+$ activated protein kinase C and enhanced phosphorylation of mitogen-activated protein kinases and Akt. $NAD^+$- and $NADP^+$-mediated CCL2 release was significantly attenuated by SP6001250, U0126, LY294002, Akt inhibitor IV, RO318220, GF109203X, and diphenyleneiodium chloride. These results indicate that extracellular nucleotides can promote the proinflammatory VSMC phenotype by up-regulating CCL2 expression, and that multiple cellular elements, including phosphatidylinositol 3-kinase, Akt, protein kinase C, and mitogen-activated protein kinases, are involved in that process.

Comparative Study of Extracellular Proteomes for Bacillus subtilis and Bacillus amyloliquefaciens

  • Lauan, Maria Claret;Santos, IlynLyzette;Lim, Jinkyu
    • Current Research on Agriculture and Life Sciences
    • /
    • 제31권1호
    • /
    • pp.30-37
    • /
    • 2013
  • Bacillus subtilis and Bacillus amyloliquefaciens are closely related species that share a similar genomic background, and are both known to secrete large amounts of proteins directly into a medium. The extracellular proteomes of two strains of Bacillus subtilis and two strains of Bacillus amyloliquefaciens were compared by 2-D gel electrophoresis during the late exponential growth phase. The relative abundance of some minor protein spots varied among the four strains of Bacillus. Over 123 spots of extracellular proteins were visualized on the gel for B. subtilis CH 97, 68 spots for B. subtilis 3-5, 230 spots for B. amyloliquefaciens CH 51, and 60 spotsfor B. amyloliquefaciens 86-1. 2D gel electrophoresis images of the four Bacillus strains showed significantly different protein profiles. Consistent with the 2D gel electrophoretic analysis, most of the B. subtilis proteins differed from the proteases secreted by the B. amyloliquefaciensstrains. Among the proteins identified from B. subtilis, approximately 50% were cytoplasmic and 30% were canonically extracellular proteins. The secreted protein profiles for B. subtilis CH 97 and B. subtilis 3-5 were quite different, as were the profiles for B. amyloliquefaciens CH 51 and 86-1. The four proteomes also differed in the major protein composition. The B. subtilis CH 97 and B. amyloliquefaciens CH 51 proteomes both contained large amounts of secreted hydrolytic enzymes. Among the four strains, B. subtilis 3-5 secreted the least number of proteins. Therefore, even closely related bacteria in terms of genomic sequences can still have significant differences in their physiology and proteome layout.

  • PDF