DOI QR코드

DOI QR Code

Nucleocapsid and Spike Proteins of SARS-CoV-2 Drive Neutrophil Extracellular Trap Formation

  • Young-Jin Youn (Department of Physiology, School of Medicine, Kyungpook National University) ;
  • Yu-Bin Lee (Department of Physiology, School of Medicine, Kyungpook National University) ;
  • Sun-Hwa Kim (Department of Physiology, School of Medicine, Kyungpook National University) ;
  • Hee Kyung Jin (Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University) ;
  • Jae-sung Bae (Department of Physiology, School of Medicine, Kyungpook National University) ;
  • Chang-Won Hong (Department of Physiology, School of Medicine, Kyungpook National University)
  • Received : 2020.10.11
  • Accepted : 2021.02.14
  • Published : 2021.04.30

Abstract

Patients with severe coronavirus disease 2019 (COVID-19) demonstrate dysregulated immune responses including exacerbated neutrophil functions. Massive neutrophil infiltrations accompanying neutrophil extracellular trap (NET) formations are also observed in patients with severe COVID-19. However, the mechanism underlying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced NET formation has not yet been elucidated. Here we show that 2 viral proteins encoded by SARS-CoV-2, the nucleocapsid protein and the whole spike protein, induce NET formation from neutrophils. NET formation was ROSindependent and was completely inhibited by the spleen tyrosine kinase inhibition. The inhibition of p38 MAPK, protein kinase C, and JNK signaling pathways also inhibited viral protein-induced NET formation. Our findings demonstrate one method by which SARSCoV-2 evades innate immunity and provide a potential target for therapeutics to treat patients with severe COVID-19.

Keywords

Acknowledgement

This study was supported by 2019R1A2C1087814 and 2020R1A4A2002691 from the National Research Foundation of Korea (NRF).

References

  1. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ; HLH Acros Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppresion. Lancet 2020;395:1033-1034. https://doi.org/10.1016/S0140-6736(20)30628-0
  2. Tay MZ, Poh CM, Renia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol 2020;20:363-374. https://doi.org/10.1038/s41577-020-0311-8
  3. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, Levantovsky R, Malle L, Moreira A, Park MD, et al. Immunology of COVID-19: current state of the science. Immunity 2020;52:910-941. https://doi.org/10.1016/j.immuni.2020.05.002
  4. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J, Crawford JM, Dasler-Plenker J, Guerci P, Huynh C, Knight JS, et al. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J Exp Med 2020;217:e20200652.
  5. Fox SE, Akmatbekov A, Harbert JL, Li G, Quincy Brown J, Vander Heide RS. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med 2020;8:681-686. https://doi.org/10.1016/S2213-2600(20)30243-5
  6. Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, Blair C, Weber A, Barnes BJ, Egeblad M, et al. Neutrophil extracellular traps in COVID-19. JCI Insight 2020;5:e138999.
  7. Schulte-Schrepping J, Reusch N, Paclik D, Basler K, Schlickeiser S, Zhang B, Kramer B, Krammer T, Brumhard S, Bonaguro L, et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell 2020;182:1419-1440.e23. https://doi.org/10.1016/j.cell.2020.08.001
  8. Nemeth T, Sperandio M, Mocsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov 2020;19:253-275. https://doi.org/10.1038/s41573-019-0054-z
  9. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 2010;107:15880-15885. https://doi.org/10.1073/pnas.1005743107
  10. Skendros P, Mitsios A, Chrysanthopoulou A, Mastellos DC, Metallidis S, Rafailidis P, Ntinopoulou M, Sertaridou E, Tsironidou V, Tsigalou C, et al. Complement and tisue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J Clin Invest 2020;130:6151-6157. https://doi.org/10.1172/JCI141374
  11. Park SY, Shrestha S, Youn YJ, Kim JK, Kim SY, Kim HJ, Park SH, Ahn WG, Kim S, Lee MG, et al. Autophagy primes neutrophils for neutrophil extracellular trap formation during sepsis. Am J Respir Crit Care Med 2017;196:577-589. https://doi.org/10.1164/rccm.201603-0596OC
  12. Shrestha S, Noh JM, Kim SY, Ham HY, Kim YJ, Yun YJ, Kim MJ, Kwon MS, Song DK, Hong CW. Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonist attenuate tumor growth via polarization of neutrophils toward an antitumor phenotype. OncoImmunology 2015;5:e1067744.
  13. Dosch SF, Mahajan SD, Collins AR. SARS coronavirus spike protein-induced innate immune response occurs via activation of the NF-kappaB pathway in human monocyte macrophages in vitro. Virus Res 2009;142:19-27. https://doi.org/10.1016/j.virusres.2009.01.005
  14. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181:271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052
  15. Narasaraju T, Yang E, Samy RP, Ng HH, Poh WP, Liew AA, Phoon MC, van Rooijen N, Chow VT. Excesive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol 2011;179:199-210. https://doi.org/10.1016/j.ajpath.2011.03.013
  16. Douda DN, Jackson R, Grasemann H, Palaniyar N. Innate immune collectin surfactant protein D simultaneously binds both neutrophil extracellular traps and carbohydrate ligands and promotes bacterial trapping. J Immunol 2011;187:1856-1865. https://doi.org/10.4049/jimmunol.1004201
  17. Liu J, Liu Y, Xiang P, Pu L, Xiong H, Li C, Zhang M, Tan J, Xu Y, Song R, et al. Neutrophil-to-lymphocyte ratio predicts critical illnes patients with 2019 coronavirus disease in the early stage. J Transl Med 2020;18:206.
  18. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;323:1061-1069. https://doi.org/10.1001/jama.2020.1585
  19. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054-1062. https://doi.org/10.1016/S0140-6736(20)30566-3
  20. Feng Z, Diao B, Wang R, Wang G, Wang C, Tan Y, Liu L, Wang C, Liu Y, Liu Y, et al. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly decimates human spleens and lymph nodes. medRxiv 2020. doi: 10.1101/2020.03.27.20045427.
  21. Okba NMA, Muller MA, Li W, Wang C, GeurtsvanKesel CH, Corman VM, Lamers MM, Sikkema RS, de Bruin E, Chandler FD, et al. Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease patients. Emerg Infect Dis 2020;26:1478-1488. https://doi.org/10.3201/eid2607.200841
  22. Hoving JC, Wilson GJ, Brown GD. Signalling C-type lectin receptors, microbial recognition and immunity. Cell Microbiol 2014;16:185-194. https://doi.org/10.1111/cmi.12249
  23. Mocsai A, Ruland J, Tybulewicz VL. The syk tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 2010;10:387-402. https://doi.org/10.1038/nri2765
  24. Gramberg T, Hofmann H, Moller P, Lalor PF, Marzi A, Geier M, Krumbiegel M, Winkler T, Kirchhoff F, Adams DH, et al. LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus. Virology 2005;340:224-236. https://doi.org/10.1016/j.virol.2005.06.026
  25. Jeffers SA, Tusell SM, Gillim-Ros L, Hemmila EM, Achenbach JE, Babcock GJ, Thomas WD Jr, Thackray LB, Young MD, Mason RJ, et al. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A 2004;101:15748-15753. https://doi.org/10.1073/pnas.0403812101
  26. Thomas CJ, Schroder K. Pattern recognition receptor function in neutrophils. Trends Immunol 2013;34:317-328. https://doi.org/10.1016/j.it.2013.02.008
  27. Gollapalli P, S SB, Rimac H, Patil P, Nalilu SK, Kandagalla S, Shetty P. Pathway enrichment analysis of virus-host interactome and prioritization of novel compounds targeting the spike glycoprotein receptor binding domain-human angiotensin-converting enzyme 2 interface to combat SARS-CoV-2. J Biomol Struct Dyn 2020. doi: 10.1080/07391102.2020.1841681.
  28. Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science 2020;369:330-333. https://doi.org/10.1126/science.abb9983
  29. Grant OC, Montgomery D, Ito K, Woods RJ. Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition. Sci Rep 2020;10:14991.
  30. Li X, Utomo A, Cullere X, Choi MM, Milner DA Jr, Venkatesh D, Yun SH, Mayadas TN. The β-glucan receptor Dectin-1 activates the integrin Mac-1 in neutrophils via Vav protein signaling to promote Candida albicans clearance. Cell Host Microbe 2011;10:603-615. https://doi.org/10.1016/j.chom.2011.10.009
  31. Straser D, Neumann K, Bergmann H, Marakalala MJ, Guler R, Rojowska A, Hopfner KP, Brombacher F, Urlaub H, Baier G, et al. Syk kinase-coupled C-type lectin receptors engage protein kinase C-δ to elicit Card9 adaptor-mediated innate immunity. Immunity 2012;36:32-42. https://doi.org/10.1016/j.immuni.2011.11.015
  32. Jacinto E, Werlen G, Karin M. Cooperation between syk and Rac1 leads to synergistic JNK activation in T lymphocytes. Immunity 1998;8:31-41. https://doi.org/10.1016/S1074-7613(00)80456-2