Increase in Intracellular Calcium is Necessary for RANKL Induction by High Extracellular Calcium

  • Jun, Ji-Hae (Department of Pharmacology and Dental Therapeutics, College of Dentistry, Dental Research Institute, Seoul National University) ;
  • Kim, Hyung-Keun (Department of Pharmacology and Dental Therapeutics, College of Dentistry, Dental Research Institute, Seoul National University) ;
  • Woo, Kyung-Mi (Department of Pharmacology and Dental Therapeutics, College of Dentistry, Dental Research Institute, Seoul National University) ;
  • Kim, Gwan-Shik (Department of Pharmacology and Dental Therapeutics, College of Dentistry, Dental Research Institute, Seoul National University) ;
  • Baek, Jeong-Hwa (Department of Pharmacology and Dental Therapeutics, College of Dentistry, Dental Research Institute, Seoul National University)
  • Published : 2005.03.31

Abstract

Recently, we reported that high extracellular calcium increased receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) expression via p44/42 mitogen-activated protein kinase (p44/42 MAPK) activation in mouse osteoblasts. However, the mechanism for p44/42 MAPK activation by high extracellular calcium is unclear. In this study, we examined the role of intracellular calcium increase in high extracellular calcium-induced RANKL induction and p44/42 MAPK activation. Primary cultured mouse calvarial osteoblasts were used. RANKL expression was highly induced by 10 mM calcium treatment. Ionomycin, a calcium ionophore, also increased RANKL expression and activated p44/42 MAPK. U0126, an inhibitor of MEK1/2, an upstream activator of p44/42 MAPK, blocked the RANKL induction by both high extracellular calcium and ionomycin. High extracellular calcium increased the phosphorylation of proline-rich tyrosine kinase 2 (Pyk2), one of the known upstream regulators of p44/42 MAPK activation. Bisindolylmaleimide, an inhibitor of protein kinase C, did not block RANKL induction and p44/42 MAPK activation induced by high extracellular calcium. 2-Aminoethoxydiphenyl borate, an inhibitor of inositol 1,4,5-trisphosphate (IP3) receptor, blocked the RANKL induction by high extracellular calcium. It also partially suppressed the activation of Pyk2 and p44/42 MAPK. Cyclosporin A, an inhibitor of calcineurin, also inhibited high calcium-induced RANKL expression in dose dependent manner. However, cyclosporin A did not affect the activation of Pyk2 and p44/42 MAPK by high extracellular calcium treatment. These results suggest that 1) the increase in intracellular calcium via IP3-mediated calcium release is necessary for RANKL induction by high extracellular calcium treatment, 2) Pyk2 activation, but not protein kinase C, following the increase in intracellular calcium might be involved in p44/42 MAPK activation, and 3) calcineurin-NFAT activation by the increase in intracellular calcium is involved in RANKL induction by high extracellular calcium treatment.

References

  1. Boutahar, N., Guignandon, A., Vico, L. and Lafage-Proust, M.H.: Mechanical strain on osteoblasts activates autophosphorylation of focal adhesion kinase and proline-rich tyrosine kinase 2 tyrosine sites involved in ERK activation. J. Biol. Chem. 279:30588-30599, 2004 https://doi.org/10.1074/jbc.M313244200
  2. Brown, E.M. and MacLeod, R.J.: Extracellular calcium sensing and extracellular calcium signaling. Physiol. Rev. 81:239-297, 2001
  3. Hofbauer, L.C., Shui, C., Riggs, B.L., Dunstan, C.R., Spelsberg, T.C., O'Brien, T. and Khosla, S.: Effects of immunosuppressants on receptor activator of NF-kappaB ligand and osteoprotegerin production by human osteoblastic and coronary artery smooth muscle cells. Biochem. Biophys. Res. Commun. 280:334-339, 2001 https://doi.org/10.1006/bbrc.2000.4130
  4. Hogan, P.G., Chen, L., Nardone, J. and Rao, A.: Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17:2205-2232, 2003 https://doi.org/10.1101/gad.1102703
  5. Kameda, T., Mano, H., Yamada, Y., Takai, H., Amizuka, N., Kobori, M., Izumi, N., Kawashima, H., Ozawa, H., Ikeda, K., Kameda, A., Hakeda, Y. and Kumegawa, M.: Calciumsensing receptor in mature osteoclasts, which are bone resorbing cells. Biochem. Biophys. Res. Commun. 245:419-422, 1998 https://doi.org/10.1006/bbrc.1998.8448
  6. Kifor, O., MacLeod, R.J., Diaz, R., Bai, M., Yamaguchi, T., Yao, T., Kifor, I. and Brown, E.M.: Regulation of MAP kinase by calcium-sensing receptor in bovine parathyroid and CaR-transfected HEK293 cells. Am. J. Physiol. Renal Physiol. 280:F291-F302, 2001 https://doi.org/10.1152/ajprenal.2001.280.2.F291
  7. Kim, Y.H., Kim, J.M., Kim, S.N., Kim, G.S. and Baek, J.H.: p44/42 MAPK activation is necessary for receptor activator of nuclear factor-kappaB ligand induction by high extracellular calcium. Biochem. Biophys. Res. Commun. 304:729-735, 2003a https://doi.org/10.1016/S0006-291X(03)00661-2
  8. Kim, Y.H., Pang, S.J., Jun, J.H., Baek, J.H. and Kim, G.S.: The role of p44/42 MAPK activation in $Ca^{2+}$/PKC-induced RANKL expression. Kor. J. Oral Anat. 27:55-63, 2003b
  9. Lacey, D.L., Timms, E., Tan, H.L., Kelly, M.J., Dunstan, C.R., Burgess, T., Elliot, R., Colombero, A., Elliot, G., Scully, S., Hsu, H., Sullivan, J., Hawkins, N., Davy, E., Capparelli, C., Eli, A., Qian, Y.X., Kaufinan, S., Sarosi, I., Shalhoub, V., Senaldi, G., Guo, J., Delaney, J. and Boyl, W.J.: Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93: 165-176, 1998 https://doi.org/10.1016/S0092-8674(00)81569-X
  10. Matsuzaki, K., Udagawa, N., Takahashi, N., Yamaguchi, K., Yasuda, H., Shima, N., Morinaga, T., Toyama, Y., Yabe, Y., Higashio, K. and Suda, T.: Osteoclast differentiation factor (ODF) induces osteoclast-like cell formation in human peripheral blood mononuclear cell cultures. Biochem. Biophys. Res. Commun. 246:199-204, 1998 https://doi.org/10.1006/bbrc.1998.8586
  11. Nishida, S, Tsubaki, M., Hoshino, M., Namimatsu, A., Uji, H., Yoshioka, S., Tanimori, Y., Yanae, M., Iwaki, M. and Irimajiri, K.: Nitrogen-containing bisphosphonate, YM529/ONO-5920 (a novel minodronic acid), inhibits RANKL expression in a cultured bone marrow stromal cell line ST2. Biochem. Biophys. Res. Commun. 328:91-97, 2005 https://doi.org/10.1016/j.bbrc.2004.12.145
  12. Pi, M., Gamer, S.C., Flannery, P., Spumey, R.F. and Quarles, L.D.: Sensing of extracellular cations in CasR-deficient osteoblasts. Evidence for a novel cation-sensing mechanism. J. Biol. Chem. 275:3256-3263, 2000 https://doi.org/10.1074/jbc.275.5.3256
  13. Quinn, J.M.W., Elliot, J., Gillespie, M.T. and Martin, T.J.: A combination of osteoclast differentiation factor and macrophage-colony stimulating factor is sufficient for both human and mouse osteoclast formation in vitro. Endocrinology 139:4424-4427, 1998 https://doi.org/10.1210/en.139.10.4424
  14. Roodman, G.D.: Advances in bone biology: the osteoclast. Endocr. Rev. 4:308-332, 1996
  15. Sakwe, A.M., Larsson, M. and Rask, L.: Involvement of protein kinase C-alpha and -epsilon in extracellular Ca(2+) signalling mediated by the calcium sensing receptor. Exp. Cell. Res. 97:560-573, 2004
  16. Sanna, B., Bueno, O.F., Dai, Y.S, Wilkins, B.J. and Molkentin, J.D.: Direct and indirect interactions between calcineurin-NFAT and MEK1-extracellular signal-regulated kinase 1/2 signaling pathways regulate cardiac gene expression and cellular growth. Mol. Cell. Biol. 25:865-878, 2005 https://doi.org/10.1128/MCB.25.3.865-878.2005
  17. Shin, M.M., Kim, Y.H., Kim, S.N., Kim, G.S. and Baek, J.H.: High extracellular $Ca^{2+}$ alone stimulates osteoclast formation but inhibits in the presence of other osteoclastogenic factors. Exp. Mol. Med. 35:167-174, 2003 https://doi.org/10.1038/emm.2003.23
  18. Suda, T., Takahashi, N. and Martin, T.J.: Modulation of osteoclast differentiation. Endocr. Rev. 13:66-80, 1992
  19. Tahara, S., Fukuda, K., Kodama, H., Kato, T, Miyoshi, S. and Ogawa, S.: Potassium channel blocker activates extracellular signal-regulated kinases through Pyk2 and epidermal growth factor receptor in rat cardiomyocytes. J. Am. Coll. Cardiol. 8:1554-1563, 2001 https://doi.org/10.1016/S0735-1097(01)01558-3
  20. Takahashi, N., Udagawa, N. and Suda, T.: A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL,regulates osteoclast differentiation and function. Biochem. Biophys. Res. Commun. 256:449-455, 1999 https://doi.org/10.1006/bbrc.1999.0252
  21. Takami, M., Takahashi, N., Udagawa, N., Miyaura, C., Suda, K., Woo, J.T, Martin, T.J., Nagai, K. and Suda, T.: Intracellular calcium and protein kinase C mediate expression of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in osteoblasts. Endocrinology 141:4711-4719, 2000 https://doi.org/10.1210/en.141.12.4711
  22. Tsai, J.A., Bucht, E., Torring, O. and Kindmark, H.: Extracellular calcium increases free cytoplasmic calcium and DNA synthesis in human osteoblasts. Horm. Metab. Res. 6:22-26, 2004
  23. Wetzker, R. and Bohmer, F.D.: Transactivation joins multiple tracks to the ERK/MAPK cascade. Nat. Rev. Mol. Cell. Biol. 4:651-657, 2003 https://doi.org/10.1038/nrm1173
  24. Yamaguchi, T, Kifor, O., Chattopadhyay, N. and Brown, E.M.: Expression of extracellular calcium($Ca^{2+}\;_o$)-sensing receptor in the clonal osteoblast-like cell lines, UMR-106 and SAOS-2. Biochem. Biophys. Res. Commun. 243:753- 757, 1998a https://doi.org/10.1006/bbrc.1998.8178
  25. Yamaguchi, T., Chattopadhyay, N., Kifor, O., Butters, R.R. Jr., Sugimoto, T. and Brown, E.M.: Mouse osteoblastic cell line (MC3T3 - E1) expresses extracellular calcium($Ca^{2+}\;_o$)-sensing receptor and its agonists stimulate chemotaxis and proliferation of MC3T3-E1 cells. J. Bone Miner. Res. 13:1530-1538, 1998b https://doi.org/10.1359/jbmr.1998.13.10.1530
  26. Yang, T.T., Xiong, Q., Graef, I.A., Crabtree, G.R. and Chow, C.W.: Recruitment of the extracellular signal-regulated kinase/ribosomal S6 kinase signaling pathway to the NFATc4 transcription activation complex. Mol. Cell. Biol. 25:907-920, 2005 https://doi.org/10.1128/MCB.25.3.907-920.2005
  27. Yano, S., Macleod, R.J., Chattopadhyay, N., Tfelt-Hansen, J., Kifor, O., Butters, R.R. and Brown, E.M.: Calcium-sensing receptor activation stimulates parathyroid hormone-related protein secretion in prostate cancer cells: role of epidermal growth factor receptor transactivation. Bone 35:664-672, 2004 https://doi.org/10.1016/j.bone.2004.04.014
  28. Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., Tsuda, E., Morinaga, T., Higashio, K., Udagawa, N., Takahashi, N. and Suda, T.: Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. U.S.A. 95:3597-3602, 1998 https://doi.org/10.1073/pnas.95.7.3597