• Title/Summary/Keyword: Extracellular matrix (ECM)

Search Result 209, Processing Time 0.033 seconds

Contraction Behavior of Collagen Gel and Fibroblats Activity in Dermal Equivalent Model

  • Yang, Eun-Kyung;Lee, Doo-Hoon;Park, Sue-Nie;Choe, Tae-Boo;Park, Jung-Keug
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.267-271
    • /
    • 1997
  • We developed a dermal equivalent (DE) which was engineered using human dermal fibroblasts and a matrix of collagen gel. The in vitro construction of the DE was accomplished by casting a porcine collagen type I solution plus concentrated medium with isolated and cultured fibroblasts. These constructs were attached to culture dishes or left floating in culture medium. Contraction of attached gels results in decreased gel thickness without a change in gel diameter, and contraction of floating gels results in decreased gel thickness and diameter. After contraction, there was no increase in cell number in floating gels, but cells in attached gels began to increase after about 4 days of the lag phase in cell growth curve. At this lag phase, addition of fibroblast growth factor (FGF) at a concentration of $0.1{\mu}$/ml promoted cell proliferation in the attached collagen gels, but no effect in floating gels. These results indicate that the method of contraction had an influence on the extracellular matrix (ECM) organization, and this influenced not only cell growth but also fibroblast responsiveness to FGF. This suggests that attached collagen gel is more suitable as a dermal equivalent than the floating gel. And the final contracted area of attached gel is much larger than that of the floating gel since floating gel is contracted in all directions but attached gel is contracted only vertically.

  • PDF

Comparison of Single and Sandwich Collagen Gel on the Survival and Metabolism of Rat Hepatocytes Primary Cell Culture (쥐 간세포 일차배양 세포의 생존능과 대사능에 단층과 복층 콜라젠 젤이 미치는 영향의 비교)

  • 정미경;이혜경
    • KSBB Journal
    • /
    • v.11 no.4
    • /
    • pp.453-461
    • /
    • 1996
  • We compared the effects of two different systems of collagen matrix protein application on the survival and the biological functions of cultured primary hepatocytes. The rat liver primary hepatocytes were grown for approximately 40 days in vitro either on single collagen gel or between collagen sandwich gels. The morphological changes were observed for this culture period. While the hepatocytes grown on single gel began to die around at 7 days of culture, the cells grown between collagen gels still maintained their viability and began to die after 15 days. As markers for liver hepatic functions, we determined the biochemical activities of hepatocytes such as the secretions of albumin, fibronectin, fibrinogen, urea, and the reduction of secreted ammonia. We found that the rat hepatocytes cultured between collagen gels maintained fairly good biochemical functions than the hepatocytes cultured on single gel did. Therefore, the application of an extracellular matrix protein, collagen, in sandwich form was confirmed as a better choice for maintaining the functional hepatocytes culture for long term in vitro.

  • PDF

Silencing of Lysyl Oxidase Gene Expression by RNA Interference Suppresses Metastasis of Breast Cancer

  • Liu, Jian-Lun;Wei, Wei;Tang, Wei;Jiang, Yi;Yang, Hua-Wei;Li, Jing-Tao;Zhou, Xiao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3507-3511
    • /
    • 2012
  • Objective: The aim of this study was to investigate possible mechanisms of LOX gene effects on invasion and metastasis of breast cancer cells by RNA interference. Methods: LOX-RNAi-LV was designed, synthesized, and then transfected into a breast cancer cell line (MDA-MB-231). Expression of LOX, MMP-2 and MMP-9 was determined by real-time PCR, and protein expression of LOX by Western blotting. Cell migration and invasiveness were assessed with Transwell chambers. A total of 111 cases of breast cancer tissues, cancer-adjacent normal breast tissues, and 20 cases of benign lesion tissues were assessed by immunohistochemistry. Results: Expression of LOX mRNA and protein was suppressed, and the expression of MMP-2 and MMP-9 was significantly lower in the RNAi group than the control group (P<0.05), after LOX-RNAi-LV was transfection into MDA-MB-231 cells. Migration and invasion abilities were obviously inhibited. The expression of LOX protein in breast cancer, cancer-adjacent normal breast tissues and benign breast tumor were 48.6% (54/111), 26.1% (29/111), 20.0% (4/20), respectively, associations being noted with clinical stage, lymph node metastasis, tumor size and ER, PR, HER2, but not age. LOX protein was positively correlated with MMP-2 and MMP-9. Conclusion: LOX displayed an important role in invasion and metastasis of breast cancer by regulating MMP-2 and MMP-9 expression which probably exerted synergistic effects on the extracellular matrix (ECM).

Saponins from Panax japonicus ameliorate age-related renal fibrosis by inhibition of inflammation mediated by NF-κB and TGF-β1/Smad signaling and suppression of oxidative stress via activation of Nrf2-ARE signaling

  • Gao, Yan;Yuan, Ding;Gai, Liyue;Wu, Xuelian;Shi, Yue;He, Yumin;Liu, Chaoqi;Zhang, Changcheng;Zhou, Gang;Yuan, Chengfu
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.408-419
    • /
    • 2021
  • Background: The decreased renal function is known to be associated with biological aging, of which the main pathological features are chronic inflammation and renal interstitial fibrosis. In previous studies, we reported that total saponins from Panax japonicus (SPJs) can availably protect acute myocardial ischemia. We proposed that SPJs might have similar protective effects for aging-associated renal interstitial fibrosis. Thus, in the present study, we evaluated the overall effect of SPJs on renal fibrosis. Methods: Sprague-Dawley (SD) aging rats were given SPJs by gavage beginning from 18 months old, at 10 mg/kg/d and 60 mg/kg/d, up to 24 months old. After the experiment, changes in morphology, function and fibrosis of their kidneys were detected. The levels of serum uric acid (UA), β2-microglobulin (β2-MG) and cystatin C (Cys C) were assayed with ELISA kits. The levels of extracellular matrix (ECM), matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), inflammatory factors and changes of oxidative stress parameters were examined. Results: After SPJs treatment, SD rats showed significantly histopathological changes in kidneys accompanied by decreased renal fibrosis and increased renal function; As compared with those in 3-month group, the levels of serum UA, Cys C and β2-MG in 24-month group were significantly increased (p < 0.05). Compared with those in the 24-month group, the levels of serum UA, Cys C and β2-MG in the SPJ-H group were significantly decreased. While ECM was reduced and the levels of MMP-2 and MMP-9 were increased, the levels of TIMP-1, TIMP-2 and transforming growth factor-β1 (TGF-β1)/Smad signaling were decreased; the expression level of phosphorylated nuclear factor kappa-B (NF-κB) was down-regulated with reduced inflammatory factors; meanwhile, the expression of nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) signaling was aggrandized. Conclusion: These results suggest that SPJs treatment can improve age-associated renal fibrosis by inhibiting TGF-β1/Smad, NFκB signaling pathways and activating Nrf2-ARE signaling pathways and that SPJs can be a potentially valuable anti-renal fibrosis drug.

LncRNA H19 Drives Proliferation of Cardiac Fibroblasts and Collagen Production via Suppression of the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β Axis

  • Guo, Feng;Tang, Chengchun;Huang, Bo;Gu, Lifei;Zhou, Jun;Mo, Zongyang;Liu, Chang;Liu, Yuqing
    • Molecules and Cells
    • /
    • v.45 no.3
    • /
    • pp.122-133
    • /
    • 2022
  • The aim of this study was to investigating whether lncRNA H19 promotes myocardial fibrosis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis. Patients with atrial fibrillation (AF) and healthy volunteers were included in the study, and their biochemical parameters were collected. In addition, pcDNA3.1-H19, si-H19, and miR-29a/b-3p mimic/inhibitor were transfected into cardiac fibroblasts (CFs), and proliferation of CFs was detected by MTT assay. Expression of H19 and miR-29a/b-3p were detected using real-time quantitative polymerase chain reaction, and expression of α-smooth muscle actin (α-SMA), collagen I, collagen II, matrix metalloproteinase-2 (MMP-2), and elastin were measured by western blot analysis. The dual luciferase reporter gene assay was carried out to detect the sponging relationship between H19 and miR-29a/b-3p in CFs. Compared with healthy volunteers, the level of plasma H19 was significantly elevated in patients with AF, while miR-29a-3p and miR-29b-3p were markedly depressed (P < 0.05). Serum expression of lncRNA H19 was negatively correlated with the expression of miR-29a-3p and miR-29b-3p among patients with AF (rs = -0.337, rs = -0.236). Moreover, up-regulation of H19 expression and down-regulation of miR-29a/b-3p expression facilitated proliferation and synthesis of extracellular matrix (ECM)-related proteins. SB431542 and si-VEGFA are able to reverse the promotion of miR-29a/b-3p on proliferation of CFs and ECM-related protein synthesis. The findings of the present study suggest that H19 promoted CF proliferation and collagen synthesis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis, and provide support for a potential new direction for the treatment of AF.

Suppressive Activity of Extract of Termialia chebula Retz. on Hepatic Fibrosis (가자(Terminalia chebula Retz.) 추출물의 간섬유화 억제활성)

  • Lee, Hyun-Sun;Koo, Yun-Chang;Lee, Kwang-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.597-601
    • /
    • 2009
  • Activation of hepatic stellate cells (HSCs) is known to be responsible for hepatic fibrosis and cirrhosis. When round-shape quiescent HSCs go to activation by liver injury, production of extracellular matrix is increased, and its shape becomes myofibroblast-like shape. The activated HSCs are characterized by the high rate of proliferation and the increased production of extracellular matrix. One way of the regeneration of activated HSCs is an apoptosis induction followed by removing the activated myofibroblast-like cells. The effect of extract of Terminalia chebula Retz. (TCE) on cytotoxicity was evaluated using the rat primary hepatocyte, HepG2 and T-HSC/Cl-6 by incubating these cells with TCE up to the dose of $1,000{\mu}g/mL$. At the maximum dose of TCE, no cytotoxicity was found on primary hepatocyte and HepG2, but cytotoxic effect of TCE was found on activated HSCs, and T-HSC/Cl-6 in a U-shaped dose-response manner with the highest effect at $500{\mu}g/mL$ of TCE. Finally, we confirmed the occurrence of apoptotic cell death by annexin-V/PI double staining. The population of annexin-V positive cells was increased in a dose dependent manner.

Comparative secretome analysis of human follicular dermal papilla cells and fibroblasts using shotgun proteomics

  • Won, Chong-Hyun;Kwon, Oh-Sang;Kang, Yong-Jung;Yoo, Hyeon-Gyeong;Lee, Dong-Hun;Chung, Jin-Ho;Kim, Kyu-Han;Park, Won-Seok;Park, Nok-Hyun;Cho, Kun;Kwon, Sang-Oh;Choi, Jong-Soon;Eun, Hee-Chul
    • BMB Reports
    • /
    • v.45 no.4
    • /
    • pp.253-258
    • /
    • 2012
  • The dermal papilla cells (DPCs) of hair follicles are known to secrete paracrine factors for follicular cells. Shotgun proteomic analysis was performed to compare the expression profiles of the secretomes of human DPCs and dermal fibroblasts (DFs). In this study, the proteins secreted by DPCs and matched DFs were analyzed by 1DE/LTQ FTICR MS/MS, semi-quantitatively determined using emPAI mole percent values and then characterized using protein interaction network analysis. Among the 1,271 and 1,188 proteins identified in DFs and DPCs, respectively, 1,529 were further analyzed using the Ingenuity Pathway Analysis tool. We identified 28 DPC-specific extracellular matrix proteins including transporters (ECM1, A2M), enzymes (LOX, PON2), and peptidases (C3, C1R). The biochemically-validated DPC-specific proteins included thrombospondin 1 (THBS1), an insulin-like growth factor binding protein3 (IGFBP3), and, of particular interest, an integrin beta1 subunit (ITGB1) as a key network core protein. Using the shotgun proteomic technique and network analysis, we selected ITGB1, IGFBP3, and THBS1 as being possible hair-growth modulating protein biomarkers.

Effects of PLGA/Fibrin Scaffolds on Attachment and Proliferation of Costal Cartilage Cells (PLGA/피브린 지지체가 늑연골 세포의 부착과 성장에 미치는 영향)

  • Song, Jeong Eun;Lee, Yujung;Lee, Yun Me;Cho, Sun Ah;Jang, Ji Eun;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.141-147
    • /
    • 2013
  • Poly(lactide-co-glycolic acid) (PLGA) has been widely used in the drug delivery and tissue engineering applications because of its good mechanical strength and biodegradation profile. However, cell attachment to the scaffold is low compared with that on fibrin although cells can be attached to the polymer surface. In this study, PLGA scaffolds were soaked in cells-fibrin suspension and polymerized with dropping fibrinogen-thrombin solution. Cellular proliferation activity was observed in PLGA/fibrin-seeded costal cartilage cells (CC) on 1, 3, and 7 days using the MTT assay and SEM. The effects of fibrin on the extracellular matrix (ECM) formation were evaluated using CC cell-seeded PLGA/fibrin scaffolds. The PLGA/fibrin scaffolds elicited more production of glycosaminoglycan (GAG) and collagen than the PLGA scaffold. In this study, fibrin incorporated PLGA scaffolds were prepared to evaluate the effects of fibrin on the cell attachment and proliferation in vitro and in vivo. In this result, we confirmed that proliferation of cells in PLGA/fibrin scaffolds were better than in PLGA scaffolds. The PLGA/fibrin scaffolds provide suitable environment for growth and proliferation of costal cartilage cells.

Inhibitory Effect of Rosa multiflora hip Extract on UVB-induced Skin Photoaging in Hs68 Fibroblasts (자외선으로 유도된 Hs68 섬유아세포의 노화 반응에 대한 영실추출물의 억제 효능)

  • Park, Ji-Eun;Kim, Hyoung Ja;Kim, Su-Nam;Kang, Seung Hyun;Kim, Youn Joon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.351-359
    • /
    • 2015
  • Acute and chronic ultraviolet (UV) irradiation triggers severe skin photoaging processes, which directly disrupt the normal three-dimensional integrity of skin. UV light stimulates the expression of matrix metalloproteinases (MMPs) which degrade constituents of extracellular matrix (ECM) proteins. These MMPs reduce collagen synthesis and decrease skin elasticity and integrity, resulting in wrinkle formation. In this study, we identified Rosa multiflora hip extract (RME) as an effective anti-photoaging ingredient. First, cell proliferation activity of RME was verified using Hs68 human dermal fibroblast cell line. RME downregulated MMPs expression through the inhibition of activator protein (AP)-1. In addition, type I and IV collagen expressions were increased with RME treatment and UVB-induced inflammatory responses were also reduced after RME treatment. In conclusion, R. multiflora hip extract may effectively improve UVB-induced skin aging and wrinkle formation which may provide as an anti-aging, anti-wrinkle, and anti-inflammation ingredient in cosmetic industry.

Increased Cellular NAD+ Level through NQO1 Enzymatic Action Has Protective Effects on Bleomycin-Induced Lung Fibrosis in Mice

  • Oh, Gi-Su;Lee, Su-Bin;Karna, Anjani;Kim, Hyung-Jin;Shen, AiHua;Pandit, Arpana;Lee, SeungHoon;Yang, Sei-Hoon;So, Hong-Seob
    • Tuberculosis and Respiratory Diseases
    • /
    • v.79 no.4
    • /
    • pp.257-266
    • /
    • 2016
  • Background: Idiopathic pulmonary fibrosis is a common interstitial lung disease; it is a chronic, progressive, and fatal lung disease of unknown etiology. Over the last two decades, knowledge about the underlying mechanisms of pulmonary fibrosis has improved markedly and facilitated the identification of potential targets for novel therapies. However, despite the large number of antifibrotic drugs being described in experimental pre-clinical studies, the translation of these findings into clinical practices has not been accomplished yet. NADH:quinone oxidoreductase 1 (NQO1) is a homodimeric enzyme that catalyzes the oxidation of NADH to $NAD^+$ by various quinones and thereby elevates the intracellular $NAD^+$ levels. In this study, we examined the effect of increase in cellular $NAD^+$ levels on bleomycin-induced lung fibrosis in mice. Methods: C57BL/6 mice were treated with intratracheal instillation of bleomycin. The mice were orally administered with ${\beta}$-lapachone from 3 days before exposure to bleomycin to 1-3 weeks after exposure to bleomycin. Bronchoalveolar lavage fluid (BALF) was collected for analyzing the infiltration of immune cells. In vitro, A549 cells were treated with transforming growth factor ${\beta}1$ (TGF-${\beta}1$) and ${\beta}$-lapachone to analyze the extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT). Results: ${\beta}$-Lapachone strongly attenuated bleomycin-induced lung inflammation and fibrosis, characterized by histological staining, infiltrated immune cells in BALF, inflammatory cytokines, fibrotic score, and TGF-${\beta}1$, ${\alpha}$-smooth muscle actin accumulation. In addition, ${\beta}$-lapachone showed a protective role in TGF-${\beta}1$-induced ECM expression and EMT in A549 cells. Conclusion: Our results suggest that ${\beta}$-lapachone can protect against bleomycin-induced lung inflammation and fibrosis in mice and TGF-${\beta}1$-induced EMT in vitro, by elevating the $NAD^+$/NADH ratio through NQO1 activation.