DOI QR코드

DOI QR Code

PLGA/피브린 지지체가 늑연골 세포의 부착과 성장에 미치는 영향

Effects of PLGA/Fibrin Scaffolds on Attachment and Proliferation of Costal Cartilage Cells

  • 송정은 (전북대학교 고분자나노공학과, BIN 융합공학과, 유기신물질공학과) ;
  • 이유정 (전북대학교 고분자나노공학과, BIN 융합공학과, 유기신물질공학과) ;
  • 이윤미 (전북대학교 고분자나노공학과, BIN 융합공학과, 유기신물질공학과) ;
  • 조선아 (전북대학교 고분자나노공학과, BIN 융합공학과, 유기신물질공학과) ;
  • 장지은 (전북대학교 고분자나노공학과, BIN 융합공학과, 유기신물질공학과) ;
  • 이동원 (전북대학교 고분자나노공학과, BIN 융합공학과, 유기신물질공학과) ;
  • 강길선 (전북대학교 고분자나노공학과, BIN 융합공학과, 유기신물질공학과)
  • Song, Jeong Eun (Dept. of BIN Fusion Tech. & Dept. of PolymerNano Sci. Tech., Dept. of Advanced Organic Materials Engineering, Chonbuk National University) ;
  • Lee, Yujung (Dept. of BIN Fusion Tech. & Dept. of PolymerNano Sci. Tech., Dept. of Advanced Organic Materials Engineering, Chonbuk National University) ;
  • Lee, Yun Me (Dept. of BIN Fusion Tech. & Dept. of PolymerNano Sci. Tech., Dept. of Advanced Organic Materials Engineering, Chonbuk National University) ;
  • Cho, Sun Ah (Dept. of BIN Fusion Tech. & Dept. of PolymerNano Sci. Tech., Dept. of Advanced Organic Materials Engineering, Chonbuk National University) ;
  • Jang, Ji Eun (Dept. of BIN Fusion Tech. & Dept. of PolymerNano Sci. Tech., Dept. of Advanced Organic Materials Engineering, Chonbuk National University) ;
  • Lee, Dongwon (Dept. of BIN Fusion Tech. & Dept. of PolymerNano Sci. Tech., Dept. of Advanced Organic Materials Engineering, Chonbuk National University) ;
  • Khang, Gilson (Dept. of BIN Fusion Tech. & Dept. of PolymerNano Sci. Tech., Dept. of Advanced Organic Materials Engineering, Chonbuk National University)
  • 투고 : 2012.08.29
  • 심사 : 2012.12.07
  • 발행 : 2013.03.25

초록

Poly(lactide-co-glycolic acid)(PLGA)는 좋은 기계적 성질과 생분해성으로 약물전달시스템 또는 조직공학적으로 널리 이용되고 있으나 낮은 세포 부착률을 가지고 있어 피브린을 첨가하여 이를 보완하고자 하였다. 본 연구에서 사용된 지지체는 트롬빈과 피브리노겐, 그리고 세포을 혼합시킨 후 PLGA 지지체 위에 도포시켜 제조하였다. 세포의 부착 및 증식률을 측정하고자 PLGA/피브린 지지체에 늑연골 세포를 파종 후 1, 3일 및 7일 후 SEM과 MTT 분석을 통하여 측정하였으며, 세포외기질 형성에 미치는 피브린의 영향을 확인하고자 세포를 파종 후 누드마우스에 이식하여 GAG 및 콜라겐 합성의 효과를 확인하였다. 따라서 본 연구에서는 피브린이 혼합된 PLGA 지지체가 생체 내 외 환경에서 세포의 부착 및 증식에 미치는 영향을 확인하고자 연구를 진행하였다. 그 결과, PLGA/피브린 지지체가 기존의 PLGA 지지체와 비교하여 탁월한 세포 성장률을 나타내는 것으로 확인하였다.

Poly(lactide-co-glycolic acid) (PLGA) has been widely used in the drug delivery and tissue engineering applications because of its good mechanical strength and biodegradation profile. However, cell attachment to the scaffold is low compared with that on fibrin although cells can be attached to the polymer surface. In this study, PLGA scaffolds were soaked in cells-fibrin suspension and polymerized with dropping fibrinogen-thrombin solution. Cellular proliferation activity was observed in PLGA/fibrin-seeded costal cartilage cells (CC) on 1, 3, and 7 days using the MTT assay and SEM. The effects of fibrin on the extracellular matrix (ECM) formation were evaluated using CC cell-seeded PLGA/fibrin scaffolds. The PLGA/fibrin scaffolds elicited more production of glycosaminoglycan (GAG) and collagen than the PLGA scaffold. In this study, fibrin incorporated PLGA scaffolds were prepared to evaluate the effects of fibrin on the cell attachment and proliferation in vitro and in vivo. In this result, we confirmed that proliferation of cells in PLGA/fibrin scaffolds were better than in PLGA scaffolds. The PLGA/fibrin scaffolds provide suitable environment for growth and proliferation of costal cartilage cells.

키워드

과제정보

연구 과제 주관 기관 : 보건복지가족부

참고문헌

  1. T. Hardingham, S. Tew, and A. Murdoch, Arthritis. Res., 3, S63 (2002).
  2. J. Lee, E. Lee, H. Y. Kim, and Y. Son, Biotechnol. Appl. Biochem., 48, 149 (2004).
  3. S. J. Kim, H. H. Hong, S. H. Kim, H. L. Kim, S. H. Kim, and G. Khang, Polymer(Korea), 34, 63 (2010).
  4. Y. K. Ko, S. H. Kim, J. S. Jeong, H. J. Ha, S. J. Yoon, J. M. Rhee, M. S. Kim, H. B. Lee, and G. Khang, Polymer(Korea), 31, 14 (2007).
  5. E. Shin, S. C Yoo, B. J. Song, Y. K. Kim, H. J. Park, K. Y. Seong, Y. S. Song, D. Lee, and G. Khang, Int. J. Tissue. Reg., 1, 28 (2010).
  6. G. Khang, S. J. Lee, and M. S. Kim, "Scaffold; tissue engineering", in Weber's Biomedical Engineering Handbook, 2nd Ed., Marcel Dekker, New York, Vol 1, p 336 (2006).
  7. E. H. Jo, G. Y. Lee, S. J. Cho, H. Yoo, O. Y. Kim, K. Seong, Y. S. Kang, D. Lee, and G. Khang, Biomed. Eng. Appl. Basis Commun., 23, 119 (2011). https://doi.org/10.4015/S1016237211002438
  8. O. J. Lee, J. M. Lee, H. J. Jin, and C. H. Park, Inter. J. Tissue Regen., 1, 68 (2010).
  9. H. N. Park, J. B. Lee, and I. K. Kwon, Inter. J. Tissue Regen., 1, 10 (2010).
  10. D. Klose, C. Delplace, and J. Siepmann, Int. J. Pharm., 404, 75 (2011). https://doi.org/10.1016/j.ijpharm.2010.10.054
  11. K. Fu, D. W. Pack, A. M. Klibanov, and R. Langer, Pharm. Res., 17, 100 (2000). https://doi.org/10.1023/A:1007582911958
  12. M. Sha'ban, S. J. Yoon, Y. K. Ko, H. J. Ha, S. H. Kim, J. W. So, R. B. H. Idrus, and G. Khang, J. Biomater. Sci. Polym. Edn., 19, 1219 (2008). https://doi.org/10.1163/156856208785540163
  13. F. Buyuklu, E. Hizal, Z. Yilmaz, F. I. Sahin, and O. Cakmak, J. Craniomaxillofac. Surg., 39, 225 (2011).
  14. A. G. Lau, M. W. Kindig, and R. W. Kent, Acta Biomaterialia, 7, 1202 (2011). https://doi.org/10.1016/j.actbio.2010.10.019
  15. Y. Liu, X. Z. Shu, S. D. Gray, and G. D. Prestwich, J. Biomed. Mater. Res., 68A, 142 (2004). https://doi.org/10.1002/jbm.a.10142
  16. H. S. Yoo, E. A. Lee, J. J. Yoon, and T. G. Park, Biomaterials, 26, 1925 (2005). https://doi.org/10.1016/j.biomaterials.2004.06.021
  17. H. J. Sung, C. Meredith, C. Johnson, and Z. S. Galis, Biomaterials, 25, 5742 (2004).
  18. W. Huang, X. Shi, L. Ren, C. Du, and Y. Wang, Biomaterials, 31, 4285 (2010).
  19. M. R. Urist, Science, 150, 893 (1965). https://doi.org/10.1126/science.150.3698.893
  20. Y. K. Ko, S. H. Kim, J. S. Jeong, J. Y. Lim, M. S. Kim, H. B. Lee, and G. Khang, Polymer(Korea), 31, 505 (2007).
  21. H. Lu, T. Hoshiba, N. Kawazoe, and G. Chen, Biomaterials, 32, 2499 (2011).
  22. Y. S. Song, H. N. Yoo, S. Eum, O. Y. Kim, S. C. Yoo, H. E. Kim, D. Lee, and G. Khang, Polymer(Korea), 35, 189 (2011).
  23. H. Nogami and M. R. Urist, J. Cell. Biol., 62, 519 (1974). https://doi.org/10.1083/jcb.62.2.519
  24. W. Xia, W. Liu, L. Cui, Y. Liu, W. Zhong, D. Liu, J. Wu, K. Chua, and Y. Cao, J. Bio. Mater. Res., 71B, 380 (2004).
  25. B. M. C. Gutierrez, Z. Y. G. Carvajal, M. Jobbágy, F. Rubio, L. Yuste, F. Rojo, M. L. Ferrer, and F. Monte, Adv. Funct. Mater., 17, 3513 (2007).
  26. S. H. Oh, S. G. Kang, and J. H. Lee, J. Mater. Sci. Mater. Med., 17, 137 (2006). https://doi.org/10.1007/s10854-006-5627-z
  27. W. L. Murphy, M. C. Peters, D. H. Kohn, and D. J. Mooney, Biomaterials, 21, 2521 (2000). https://doi.org/10.1016/S0142-9612(00)00120-4
  28. L. A. Solchaga, J. S. Temenoff, J. Gao, A. G. Mikos, A. I. Caplan, and V. M. Goldberg, Osteoarthr. Cartil., 13, 297 (2005). https://doi.org/10.1016/j.joca.2004.12.016

피인용 문헌

  1. Extracellular Matrix-Based Biohybrid Materials for Engineering Compliant, Matrix-Dense Tissues vol.4, pp.16, 2015, https://doi.org/10.1002/adhm.201500236