• Title/Summary/Keyword: External perturbation

Search Result 81, Processing Time 0.028 seconds

Effects of Heel-insole on Static Balance and Postural Strategy during External Perturbation in Healthy Young Men

  • Kang, Cheol-Jin;Oh, Duck-won;Son, Sung Min
    • The Journal of Korean Physical Therapy
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Purpose: This study examined the effects of heel insoles on the static balance and leg muscle activity and posture control strategy during external perturbation. Methods: Thirty healthy young men participated in the study. The subjects underwent two experimental conditions: 1) no heel insole condition (0cm) and 2) wearing heel insole condition (5cm). The static balance was measured using an I-Balance device, which measured the change in the center of gravity (COG). The onset time of muscle activation and muscle activation of the erector spinae (ES), hamstring (HAM), gastrocnemius (GCM) were measured using surface EMG electrodes to determine the change in posture control strategy during external perturbation. Results: The speed and distance of COG were significantly higher in the wearing heel insoles condition than the no heel insole condition (p<0.05). In addition, significant differences in the onset time of the GCM, HAM, and ES muscle activation were observed when there was no heel insole condition during external perturbation (p<0.017). On the other hand, no significant differences in the onset time of muscle activation were observed between GCM and HAM when wearing the heel insole condition during external perturbation (p<0.017). Moreover, muscle activation of the GCM was significantly higher in the wearing heel insoles condition than the no heel insole condition during external perturbation (p<0.05). Conclusion: These findings suggest that heel insoles may have disadvantages, and increased efforts are needed to maintain balance and change the posture control strategy during external perturbation.

Analysis of Postural Stability in Response to External Perturbation Intensity in Dancers and Non-dancers

  • Park, Da Won;Koh, Kyung;Lee, Sung Ro;Park, Yang Sun;Shim, Jae Kun
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.427-432
    • /
    • 2016
  • Objective: The goal of this study was to systematically investigate the postural stability of dancers by providing unexpected perturbations. Method: Six female dancers and college students participated in this study. Unpredictable wait-pull balance perturbations in the anterior direction were provided to the participants during standing. Three different perturbation intensities (low, moderate, and high intensity) were used by increasing perturbation forces. Spatial and temporal stability of postural control were measured by using margin of stability (MoS) and time to contact (TtC), respectively. Results: Both MoS and TtC at moderate intensity were significantly greater in the dancer group than in the control group, but no significant differences were found at low and high intensities between the groups. Conclusion: The present study showed spatial and temporal stability of dynamic postural control in dancers. We found that the dancers were more spatially and temporally stable than the ordinary participants in response to unexpected external perturbation when the perturbation intensity was moderate at two extreme intensity levels (low and high).

Design and Analysis of a Robust State Estimator Combining Perturbation Observer (섭동관측기를 연합한 강인 상태추정기 설계 및 해석)

  • Kwon SangJoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.477-483
    • /
    • 2005
  • This article describes a robust state estimation method which enables to produce reliable estimates in spite of heavy perturbation including plant uncertainty and external disturbances. The main idea is to combine the standard state estimator with the perturbation observer in the estimator frame. The perturbation observer reflects equivalent quantity of plant uncertainty and external disturbances during the estimation process so that the state estimator dynamics gets as close as possible to the real plant dynamics. The robust state estimator proposed in this paper is given in a recursive discrete-time form which is very useful fur implementation purpose. In terms of the error dynamics derived for the robust state estimator, we discuss the stability issue and noise sensitivity. The effectiveness and practicality of the robust state estimator are verified through numerical examples and experimental results.

Robust control for external input perturbation using second order derivative of universal learning network

  • Ohbayashi, Masanao;Hirasawa, Kotaro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.111-114
    • /
    • 1996
  • This paper proposes a robust control method using Universal Learning Network(U.L.N.) and second order derivatives of U.L.N.. Robust control considered here is defined as follows. Even if external input (equal to reference input in this paper) to the system at control stage changes awfully from that at learning stage, the system can be controlled so as to maintain a good performance. In order to realize such a robust control, a new term concerning the perturbation is added to a usual criterion function. And parameter variables are adjusted so as to minimize the above mentioned criterion function using the second order derivative of the criterion function with respect to the parameters.

  • PDF

Stability Rating Tests for Optimization of Axial Baffle Length (배플 길이의 최적화를 위한 연소 안정성 평가 시험)

  • Kim, Hong-Jip;Lee, Kwang-Jin;Seo, Seong-Hyeon;Kim, Seung-Han;Han, Yeoung-Min;Seol, Woo-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.69-77
    • /
    • 2005
  • To optimize and limit the axial length of the baffle of the KSR-III engine, stability rating tests using pulse gun as one of artificial disturbance devices have been done. Generally a rocket engine can be considered to be dynamically stable if a certain imposed external perturbation or pressure oscillation in rocket combustion chamber could be suppressed within a short time period. Decay time and other parameters for the evaluation of stabilization ability of an engine to external perturbation have been analyzed to quantify stabilization capacity of engine, in other words, dynamic stability margin. Baffle not covering flame zone enough which can be considered as collision region of injector wasn't be able to suppress external perturbation sufficiently. The limit of combustion stability margin of engine is assumed to be 50 mm length baffle of the KSR-III engine.

Sliding Mode Control with RLSN Predictor-Based Perturbation Estimation (RLSN 예측기 기반 섭동 추정기를 갖는 슬라이딩 모드 제어)

  • Nam Yun-Joo;Lee Yuk-Hyung;Park Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.880-888
    • /
    • 2006
  • This paper presents the sliding mode control with the perturbation estimator for a nonlinear control system in the presence of perturbations including external disturbances, unpredictable parameter variations, ana unstructured dynamics. The proposed perturbation estimator is based on the Recursive Linear Smoothed Newton predictive algorithm so that it is effective to attenuate an undesired noise in high frequency band and to predict the present perturbation signal from the previous ones. Compared to conventional sliding mode control (SMC) and sliding mode control with perturbation estimation (SMCPE) introduced by Elmali and Olgac, the control algorithm proposed in this study can offer better tracking control performances and more feasible estimation characteristics. The effectiveness and superiority of the proposed control strategy are demonstrated by a series of simulations on the position tracking control of a simple two-link robot manipulator subject to velocity feedback signals including white noises.

Gravitational Perturbation of Traversable Wormhole Spacetime and the Stability

  • Kang, YuRi;Kim, Sung-Won
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1800-1807
    • /
    • 2018
  • In this paper, we study the gravitational perturbation of traversable wormhole spacetime, especially the Morris-Thorne wormhole spacetime, by using the linearized theory of gravity. We restrict our interest to the first order term and ignore the higher order terms. We assume that the perturbation is axisymmetric. We also assume that the time dependence follows the Fourier decomposition and the angular dependence is expressed in terms of the Legendre functions. As a result, we derive the gravitational perturbation equation of traversable wormhole in terms of a single linear second-order differential equation. As a consequence, we could analyze the unstability of the spacetime with the effective potentials. Furthermore, we consider the interaction between the external gravitational perturbation and the exotic matter, constituting traversable wormholes and its effect on the stability of traversable wormholes.

연소 안정성 평가 시험을 통한 배플 길이의 안정성 여분 평가

  • Kim, Hong-Jip;Lee, Kwang-Jin;Seo, Seong-Hyeon;Kim, Seung-Han;Han, Yeoung-Min;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.188-196
    • /
    • 2004
  • To optimize and limit the axial length of baffle in KSR-III engine, stability rating tests using pulse gun as one of artificial disturbance devices have been done. Decay time and other parameters for the evaluation of stabilization ability of engine to external perturbation have been analyzed to quantify stabilization capacity of engine, in other words, dynamic stability margin. If baffle does not cover flame zone enough which can be considered as collision region of injector, it wasn't be able to suppress external perturbation sufficiently. The limit of combustion stability margin of engine is assumed to be 50 mm length baffle.

  • PDF

Analysis of the Dynamic Balance Recovery Ability by External Perturbation in the Elderly

  • Park, Da Won;Koh, Kyung;Park, Yang Sun;Shim, Jae Kun
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.3
    • /
    • pp.205-210
    • /
    • 2017
  • Objective: The aim of the study was to investigate the age-related ability of dynamic balance recovery through perturbation response during standing. Method: Six older and 6 younger adults participated in this study. External perturbation during standing as pulling force applied at the pelvic level in the anterior direction was provided to the subject. The margin of stability was quantified as a measure of postural stability or dynamic balance recovery, and using principal component analysis (PCA), the regularity of the margin of stability (MoS) was calculated. Results: Our results showed that in the older adult group, 60.99% and 28.63% of the total variance were captured using the first and second principal components (PCs), respectively, and in the younger adult group, 81.95% and 10.71% of the total variance were captured using the first and second PCs, respectively. Conclusion: Ninety percent of the total variance captured using the first two PCs indicates that the older adults had decreased regularity of the MoS than the younger adults. Thus, the results of the present study suggest that aging is associated with non-regularity of dynamic postural stability.

Design of Sliding Mode Controller with New Perturbation Estimator (새로운 섭동 추정기를 갖는 슬라이딩 모드 제어기의 설계)

  • Ham, Joon-Ho;Choi, Seung-Bok
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.782-787
    • /
    • 2004
  • In the conventional sliding mode control technique, a priori knowledge of the bound of external disturbances or/and parameter uncertainties is required to assure control robustness. This, however, may not be easy to obtain in practical situation. This work presents a novel methodology, a sliding mode controller with perturbation estimator, which offers a robust control performance without a priori knowledge about the perturbations (disturbances and parameter uncertainties). The proposed technique is featured by an integrated average value of the imposed perturbation over a certain sampling period. This work also proposes two effective actuating methods of the perturbation estimator: on-off condition and filtering condition. In order to demonstrate the effectiveness of the proposed methodology, a two-link robotic system is adopted and its position control performance is evaluated. In addition, a comparative work between the conventional technique and the proposed one is undertaken.

  • PDF