• Title/Summary/Keyword: External Implant

Search Result 171, Processing Time 0.028 seconds

AN EXPERIMENTAL STUDY ON THE OSSEOINTEGRATION OF THE TI-6AL-4V BEAD COATING IMPLANTS (Ti-6Al-4V 비드코팅 임프란트 시제품의 골유착에 대한 실험적 연구)

  • Woo, Jin-Oh;Park, Bong-Wook;Byun, June-Ho;Kim, Seung-Eon;Kim, Gyoo-Cheon;Park, Bong-Soo;Kim, Jong-Ryoul
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.1
    • /
    • pp.52-59
    • /
    • 2008
  • The geometric design of an implant surface may play an important role in affecting early osseointegration. It is well known that the porous surfaced implant had much benefits for the osseointegration and the early stability of implant. However, the porous surfaced implant had weakness from the transgingival contamitants, and it resulted in alveolar bone loss. The other problem identified with porous surface implant is the loss of physical properties resulting from the bead sintering process. In this study, we developed the new bead coating implant to overcome the disadvantages of porous surfaced implant. Ti-6Al-4V beads were supplied from STARMET (USA). The beads were prepared by a plasma rotating electrode process (PREP) and had a nearly spherical shape with a diameter of 75-150 ${\mu}m$. Two types of titanium implants were supplied by KJ Meditech (Korea). One is an external hexa system (External type) and the other is an internal system with threads (Internal type). The implants were pasted with beads using polyvinylalcohol solution as a binder, and then sintered at 1250 $^{\circ}C$ for 2 hours in vacuum of $10^{-5}$ torr. The resulting porous structure was 400-500 ${\mu}m$ thick and consisted of three to four bead layers bonded to each other and the implant. The pore size was in the range of 50-150 ${\mu}m$ and the porosity was 30-40 % in volume. The aim of this study was to evaluate the osseointegration of the newly developed dental implant. The experimental implants (n=16) were inserted in the unilateral femur of 4 mongrel dogs. All animals were killed at 8 weeks after implantation, and samples were harvested for hitological examination. All bead coated porous implants were successfully osseointegrated with peripheral bone. The average bone-implant contact ratios were 84.6 % (External type) and 81.5 % (Internal type). In the modified Goldner's trichrome staining, new generated mature bones were observed at the implant interface at 8 weeks after implantation. Although, further studies are required, we could conclude that the newly developed vacuum sintered Ti-6Al-4V bead coating implant was strong enough to resist the implant insertion force, and it was easily osseointegrated with peripheral bone.

A STUDY OF THE EFFECT OF AN ANTI-ROTATIONAL INNER POST SCREW SYSTEMS ON ABUTMENT SCREW LOOSENING FOR SINGLE IMPLANT : PART 1

  • Choi, Sun-Young;Lee, Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.3
    • /
    • pp.345-353
    • /
    • 2007
  • Statement of problem. Implant abutment screw joints tend to loosen under clinical conditions. Abutment screw loosening results in loss of preload in function. Purpose. Anti-rotational inner post screw (ARIPS) systems were compared with conventional abutment screws to reduce screw loosening. Reverse torque values were evaluated. Material and methods. 32 implant assemblies (Warentec, Co, Ltd, Seoul, Korea) were organized as the 30-Ncm-torque conventional groups and 30-Ncm-torque ARIPS groups in external and internal system. The specimens were tested to 106 cycles at a load of 200N. Preload reverse torque, postload reverse torque, and the ratio of postload reverse torque to preload reverse torque were evaluated. The data were analyzed with unpaired t-test in external and internal systems. Results. In the ratio of postload reverse torque to preload reverse torque, the ARIPS groups showed significant differences than the conventional screw group in both external and internal system. Conclusion. Within the limitations of this study, abutment screw loosening was effectively reduced using ARIPS system.

Mechanical strength of Zirconia Abutment in Implant Restoration (지르코니아 임플란트 지대주의 기계적 강도에 관한 연구)

  • Shin, Sung-ae;Kim, Chang-Seop;Cho, Wook;Jeong, Chang-Mo;Jeon, Young-Chan;Yun, Ji-Hoon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.4
    • /
    • pp.349-360
    • /
    • 2009
  • Purpose: As the esthetic demands of dental implant patients are increased, the demands of zirconia as implant abutment material are also increased. It has non-metalic color, good biocompatibility, high strength and high toughness. Even thought the advatage of zirconia abutment, there are a few studies about mechanical properties of zirconia abutment. This study evaluated the mecanical strength with compressive bending strength and endurance limit of implant-zirconia abutment assembly. Materials and Methods: Static and cyclic loading of implant-Zirconia abutment assembly were simulated under worst case condition according to ISO. Test groups were implants of external butt joint with straight regular diameter and angled regular diameter zirconia abutment, implant of external butt joint with narrow straight diameter zirconia abutment and implant of internal conical joint with straight narrow diameter zirconia abutment. All test group were evaluated the mecanical strength with compressive bending strength and endurance limit. After fatique testing, fracture surface were examined by SEM. Results: The compressive bending strengths exceed 927N. Regular diameter zirconia abutment were stronger than narrow diameter zirconia abutment(P<.05). The endurance limits ranged from 503N to 868N. Conclusion: Within the limitation of this study, zirconia implant abutment exceeded the estabilished values for maximum incisal biting forces reported in the literature.

Effect of neck design on peri-implant tissue responses in external connection type implant : a prospective pilot clinical study (외측연결형 임플란트 고정체의 경부 디자인이 임플란트 주위조직에 미치는 영향에 대한 전향적 예비 임상연구)

  • Bae, Eun-Bin;Lee, So-Hyoun;Jeon, Young-Chan;Kang, Eun-Sook;Park, Sang-Rye;Lee, Jin-Ju;Huh, Jung-Bo
    • The Journal of the Korean dental association
    • /
    • v.55 no.11
    • /
    • pp.766-776
    • /
    • 2017
  • This clinical study was conducted to evaluate the clinical effects of a concave neck of external connection type implant fixture designed for platform switching on the peri-implant tissue responses. Two types of implants with different neck designs were implanted in 20 patients. For the experimental group, the bioseal(BS) implant fixtures with 's' shaped concave profile on the neck were used, and non-bioseal(NBS) implant fixtures with a straight profile on the neck were used as control(Total of 40 implants, NBS: n = 19, BS: n=21). During the one-year period after implant placement, implant survival rate, marginal bone resorption, bleeding, plaque, and complications were evaluated. The survival rate of NBS and BS group was 94.74% and 90.48%, respectively. There was no significant difference on marginal bone resorption, bleeding and plaque between the two groups (P>.05). Within the limits of the present study, implants with a concave neck design showed similar clinical results to implants with a straight neck design on the peri-implant tissue responses. Longitudinal clinical studies are necessary to confirm more effective clinical results.

  • PDF

A study on the micromotion between the dental implant and superstructure (임플란트와 상부구조물 사이의 micromotion에 관한 연구)

  • Kim, Ji-Hye;Song, Kwang-Yeob;Jang, Tae-Yeob;Park, Ju-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.1
    • /
    • pp.17-25
    • /
    • 2003
  • Treatment with implants of single tooth missing cases is both functional and esthetic. Although the success rate of single-tooth implant treatments is increasing, sometimes it makes some problems. Problems with single-tooth implant treatments include soft tissue complications, abutment screw fracture, and most commonly, abutment screw loosening, and these involve the instability of the dental implant-superstructure interface. This study investigated and compared dental implant screw joint micromotion of various implant system with external connection or internal connection when tested under simulated clinical loading, Six groups (N=5) were assessed: (1) Branemark AurAdapt (Nobel Biocare, Goteborg, Sweden), (2) Branemark EsthetiCone (Nobel Biocare, Goteborg, Sweden), (3) Neoplant Conical (Neobiotec, Korea), (4) Neoplant UCLA (Neobiotec, Korea), (5) Neoplant 5.5mm Solid (Neobiotec, Korea), and (6) ITI SynOcta (Institute Straumann, Waldenburg, Switzerland). Six identical frameworks were fabricated. Abutment screws were tightened to 32-35 Ncm and occlusal screw were tightened to 15-20 Ncm with an electronic torque controller. A mechanical testing machine applied a compressive cyclic load of 20kg at 10Hz to a contact point on each implant crown. Strain gauge recorded the micromotion of the screw joint interface once a second. Data were selected at 1, 500, 5,000, 10,000, 20,000, 30,000, 40,000 and 50,000 cycle and 2-way ANOVA test was performed to assess the statistical significance. The results of this study were as follows; The micromotion of the implant-superstructure in the interface increased gradually through 50,000 cycles for all implant systems. In the case of the micromotion according to cycle increase, Neoplant Conical and Neoplant UCLA system exhibited significantly increasing micromotion at the implant-superstructure interface (p<0.05), but others not significant. In the case of the micromotion of the implant-superstructure interface at 50,000 cycle, the largest micromotion were recorded in the Branemark EsthetiCone, sequently followed by Neoplant Conical, Neoplant UCLA, Branemark AurAdapt, ITI SynOcta and Neplant Solid. Internal connection system showed smaller micromotion than external connection system. Specially, Neoplant Solid with internal connection system exhibited significantly smaller micromotion than other implant systems except ITI SynOcta with same internal connection system (p<0.05). In the case of external connection, Branemark EsthetiCone and Neoplant Conical system with abutment showed significantly larger micromotion than Branemark AurAdapt without abutment (p<0.05).

Clinical consideration of Immediate implant placement (발치 후 즉시 식립을 위한 임상적 고찰)

  • Oh, Sang-Yoon
    • The Journal of the Korean dental association
    • /
    • v.55 no.10
    • /
    • pp.716-724
    • /
    • 2017
  • Past literatures stressed that when a gap occurred between smooth surface implant and alveolar bone, osseointegration was unsatisfactory at histologic examination regardless of clinical findings. Accordingly, standard surgical approach in the early days of implant surgery was to place the implant after all gap was healed. However, Botticelli et al.(2004) reported high degree of osseointegration at the gap with SLA surface implant. From then, the era of immediate implantation has begun because SLA surface implant make gap healing possible. There are two main disadvantages of immediate implantation: (1) surgical technique is sensitive for primary implant stability, (2) Implant placement at the accurate position that predicts external change of extraction wound is required. Immediate implantation has outstanding advantages in all perspectives except for the above-mentioned disadvantages. Therefore, it would be unwise to abandon the option of immediate implantation simply due to surgical difficulties. The purpose of this paper is to describe the necessity of immediate implantation and to present scientific evidence for immediate implantation and accurate implant position by literature review.

  • PDF

FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS ACCORDING TO CONNECTION TYPES OF IMPLANT-ABUTMENT (임플랜트-지대주의 연결방법에 따른 임플랜트 보철의 유한요소 응력분석)

  • Hur Jin-Kyung;Kay Kee-Sung;Chung Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.544-561
    • /
    • 2005
  • Purpose : This study was to assess the loading distributing characteristics of implant systems with internal connection or external connection under vertical and inclined loading using finite element analysis. Materials and methods : Two finite element models were designed according to type of internal connection or external connection The crown for mandibular first molar was made using cemented abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the centric cusp tip in a 15$^{\circ}$ inward inclined direction (loading condition B), or 200N at the centric cusp tip in a 30$^{\circ}$ outward inclined direction (loading condition C) respectively. Von Mises stresses were recorded and compared in the supporting bone, fixture, abutment and abutment screw. Results : 1. In comparison with the whole stress or the model 1 and model 2, the stress pattern was shown through th contact of the abutment and the implant fixture in the model 1, while the stress pattern was shown through the abutment screw mainly in the model 2. 2. Without regard to the loading condition, greater stress was taken at the cortical bone, and lower stress was taken at the cancellous bone. The stress taken at the cortical bone was greater at the model 1 than at the model 2, but the stress taken at the cortical bone was much less than the stress taken at the abutment, the implant fixture, and the abutment screw in case of both model 1 and model 2. 3. Without regard to the loading condition, the stress pattern of the abutment was greater at the model 1 than at the model 2. 4. In comparison with the stress distribution of model 1 and model 2, the maximum stress was taken at the abutment in the model 1. while the maximum stress was taken at the abutment screw in the model 2. 5. The magnitude of the maximum stress taken at the supporting bone, the implant fixture, the abutment, and the abutment screw was greater in the order of loading condition A, B and C. Conclusion : The stress distribution pattern of the internal connection system was mostly distributed widely to the lower part along the inner surface of the implant fixture contacting the abutment core through its contact portion because of the intimate contact of the abutment and the implant fixture and so the less stress was taken at the abutment screw, while the abutment screw can be the weakest portion clinically because the greater stress was taken at the abutment screw in case of the external connection system, and therefore the further clinical study about this problem is needed.

Digital evaluation of axial displacement by implant-abutment connection type: An in vitro study

  • Kim, Sung-Jun;Son, KeunBaDa;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.388-394
    • /
    • 2018
  • PURPOSE. To measure axial displacement of different implant-abutment connection types and materials during screw tightening at the recommended torque by using a contact scanner for two-dimensional (2D) and three-dimensional (3D) analyses. MATERIALS AND METHODS. Twenty models of missing mandibular left second premolars were 3D-printed and implant fixtures were placed at the same position by using a surgical guide. External and internal fixtures were used. Three implant-abutment internal connection (INT) types and one implant-abutment external connection (EXT) type were prepared. Two of the INT types used titanium abutment and zirconia abutment; the other INT type was a customized abutment, fabricated by using a computer-controlled milling machine. The EXT type used titanium abutment. Screws were tightened at $10N{\cdot}cm$, simulating hand tightening, and then at the manufacturers' recommended torque ($30N{\cdot}cm$) 10 min later. Abutments and adjacent teeth were subsequently scanned with a contact scanner for 2D and 3D analyses using a 3D inspection software. RESULTS. Significant differences were observed in axial displacement according to the type of implant-abutment connection (P<.001). Vertical displacement of abutments was greater than overall displacement, and significant differences in vertical and overall displacement were observed among the four connection types (P<.05). CONCLUSION. Displacement according to connection type and material should be considered in choosing an implant abutment. When adjusting a prosthesis, tightening the screw at the manufacturers' recommended torque is advisable, rather than the level of hand tightening.

A VITRO STUDY OF RETAINED SCREW STABILITY BY VARIOUS CONNECTION DESIGNS BETWEEN FIXTURE AND ABUTMENT IN IMPLANT DENTISTRY (임플란트 고정체와 지대주 연결 형태의 차이에 따른 유지 나사 안정성에 대한 연구)

  • Yang Jae-Sik;Vang Mong-Sook;Jo Gyu-Jong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.1
    • /
    • pp.83-93
    • /
    • 2004
  • Statement of problem : Since the concept of osseointegrated dental implant by $Br{\aa}nemark$ et al was first applied to mandibular full edentulous patients. Recently it is considerated the first treatment option on missing teeth. A common problem associated with dental implant restorations is loosening of screws that retain the prosthesis to the abutment and the abutment to the implant fixture. Purpose : This study is to examine the influence on screw loosening of implant-abutment designs. Material and methods : External hex, cone screw, beveled hex, cam cylinder, cylinder hex by means of evaluating the loosening torques, with respect to a range of tightening torques after repeated loading. Result : 1. Cone screw, beveled hex groups are the highest initial tightening rate and cylinder hex, external hex groups are the lowest initial tightening rate (p < 0.05). 2. Cone screw groups are the highest after repeated loading tightening rate and cylinder hex groups are lowest after repeated loading tightening rate(p < 0.05). 3. Cone screw groups have the highest initial stability and anal stability. 4. All groups are decreased tightening rate after repeated loading.

THREE-DIMENSIONAL STRESS ANALYSIS OF IMPLANT SYSTEMS IN THE MANDIBULAR BONE WITH VARIOUS ABUTMENT TYPES AND LOADING CONDITIONS (임프란트의 상부구조물 형상과 하중조건에 따른 3차원 유한요소해석을 이용한 하악골의 응력분포에 관한 연구)

  • Shin Ha-Shik;Chun Heoung-Jae;Han Chong-Hyun;Lee Soo-Hong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.5
    • /
    • pp.617-625
    • /
    • 2003
  • Statement of problem : There are many studies focused on the effect of shape of futures on stress distribution in the mandibular bone. However, there are no studies focused on the effect of the abutment types on stress distribution in mandibular bone. Purpose : The purpose of this study is to investigate the effect of three different abutment types on the stress distributions in the mandibular bone due to various loads by performing finite element analysis. Material and method : Three different implant systems produced by Warantec (Seoul, Korea), were modeled to study the effect of abutment types on the stress distribution in the mandibular bone. The three implant systems are classified into oneplant (Oneplant, OP-TH-S11.5). internal implant (Inplant, IO-S11.5) and external implant (Hexplant, EH-S11.5). All abutments were made of titanium grade ELI. and all fixtures were made of titanium grade IV. The mandibular bone used in this study is constituted of compact and spongeous bone assumed to be homogeneous, isotropic and linearly elastic. A comparative study of stress distributions in the mandibular bone with three different types of abutment was conducted. Results : It was found that the types of abutments have significant influence on the stress distribution in the mandibular bone. It was due to difference in the load transfer mechanism and the size of contact area between abutment and fixture. Also the maximum effective stress in the mandibular bone was increased with the increase of inclination angle of load. Conclusion : It was concluded that the maximum effective stress in the bone by the internal implant was the lowest among the maximum effective stresses by other two types.