• Title/Summary/Keyword: Expression vectors

Search Result 393, Processing Time 0.031 seconds

Expression and Purification of Three Lipases (LipAD1, LipAD2, and LipAD3) and a Lipase Chaperone (LipBD) from Acinetobacter schindleri DYL129 (Acinetobacter schindleri DYL129 유래의 3개 lipases와 chaperone의 발현과 정제)

  • Kim, Sun-Hee;Lee, Yong-Suk;Jeong, Hae-Rin;Pyeon, Hyo-Min;You, Ju-Soon;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.492-498
    • /
    • 2019
  • Previously, three kinds of lipases, lipAD1, lipAD2, and lipAD3, and lipase chaperone, lipBD, of Acinetobacter schindleri DYL129 isolated from soil sample were reported. In this report, three lipase and lipase chaperone were cloned into the pET32a(+) or pGEX-6P-1 vectors for protein expression in Escherichia coli, and named as pETLAD1, pETLAD2, pETLAD3 and pETLBD or pGEXLAD1, pGEXLAD 2, pGEXLAD3 and pGEXLBD, respectively. Protein expression rate was higher in pET system than in pGEX system. Although LipAD1 and LipAD2 were produced as inclusion bodies, their expression levels were high. So LipAD1 and LipAD2 could be solubilized in 8 M urea buffer and purified. LipAD3 and LipBD were overexpressed in soluble form and purified. Those proteins were purified by His-tag affinity chromatography connected in AKTA prime system. The activities of the purified lipases were demonstrated with 1% tributyrin agar plate. After purification, molecular mass was determined with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. LipAD1 showed high activity toward ${\rho}$-nitrophenyl acetate and ${\rho}$-nitrophenyl butyrate, LipAD2 showed high activity toward ${\rho}$-nitrophenyl acetate and ${\rho}$-nitrophenyl myristate, and LipAD3 showed high activity toward ${\rho}$-nitrophenyl acetate, ${\rho}$-nitrophenyl butyrate, and ${\rho}$-nitrophenyl miristate, respectively. Three lipases, LipAD1, LipAD2, and LipAD3, showed optimal reaction at $50^{\circ}C$ using ${\rho}$-nitrophenyl butyrate, as substrate.

Transgenic tobacco culture cells expressing spike protein gene of porcine epidemic diarrhea virus (돼지 유행성 설사병 바이러스 스파크 단백질 유전자 발현 형질전환 담배 배양세포)

  • Yang, Kyoung-Sil;Kim, Hyeon-Soo;Kwon, Suk-Yoon;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Journal of Plant Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.87-94
    • /
    • 2008
  • Porcine epidemic diarrhea virus (PEDV) is an infectious and highly contagious virus of swine. In order to develop the transgenic tobacco culture cells producing PEDV antigen protein, four vectors expressing PEDV spike protein (SP) gene under the control of a CaMV 35S promoter were constructed. Four fragments of the SP region of PEDV, SP1 (444 bp, 1487-1930 bp), SP2 (1.7 kb, 2300-3987 bp), SP3 (1.4 kb, 1559-2950 bp), and SP4 (2.6 kb, 9-2643 bp) were amplified by PCR and then C-MYC tag was fused to the end of each SP gene, respectively. These cassettes are inserted into the pCAMBIA2300 (named as 35S::SP1-M, 35S::SP2-M 35S::SP3-M, and 35S::SP4-M, respectively). Tobacco (cv. BY-2) cultured cells were transformed by co-cultivation with Agrobacterium tumefaciens harboring expression vector. We selected kanamycin-resistant calli and checked for the presence of the introduced SP gene using PCR, resulting 70% of them showed the foreign gene. We selected the lines with high-level expression of PEDV antigen protein based on dot blot analysis. Southern blot analysis confirmed that the PEDV SP gene was integrated into the genome of the tobacco cultured cells. Northern blot analysis showed that the introduced gene was highly expressed in transgenic cultured cells. Transgenic tobacco cultured cells-derived antigen induced immunogenicity in mice as determined by a plaque reduction neutralization assay. These results suggest that the vectors expressing PEDV spike protein gene in this study will be useful for the development of transgenic plants and cultured cells producing PEDV antigene protein.

Expression of Recombinant Erythropoietin Gene in Transgenic Tobacco Plant (형질전환 담배 식물체에서 재조합 erythropoietin 유전자의 발현)

  • CHOI, Jang Won;PARK, Hee Sung
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.1
    • /
    • pp.63-69
    • /
    • 1997
  • Erythropoietin (EPO) is a glycoprotein that mediates the growth and differentiation of erythroid progenitors. In order to produce recombinant human erythropoietin in tobacco plant, the EPO genomic DNA (5.4 kb) was cloned into plant expression vectors, pBI$\Delta$GUS121, pBD$\Delta$GUS121 and pPEV-1, and introduced in Nicotiana tabacum (var. Xanthi) via Agrobacterium tumefaciens-mediated transformation. After selection on MS media containing kanamycin (Km), 10 Km-resistant plants were obtained per each construct. The correct integration of EPO genomic DNA in the genome of transgenic plant was confirmed by polymerase chain reaction (PCR). Northern blot showed that transcripts of 1.8 kb length were produced in leaves of the plants, but there was no difference of mRNA amount according to promoter number and 5'-untranslated sequence (UTS). The proteins obtained from leaves of transgenic plants were immunologically detected by Western blot using rabbit anti-human EPO polyclonal antibody. The expressed protein appeared as smaller band of apparent mass of 30 kDa as compared to the EPO protein from human urine (37 kDa), suggesting that the modification (glycosylation) system in tobacco plant might be different from that of mammalian cells.

  • PDF

NELL2 gene as regulator of cell cycle in neuron differentiation (신경세포 분화에서 세포주기 조절인자로서의 NELL2 유전자의 역할)

  • Joung, Mi Rim;Oh, Yeon Mi;Park, Woo Saeng;Park, Sang Kyu
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.10
    • /
    • pp.1100-1105
    • /
    • 2006
  • Purpose : Because NELL2 expression is strictly restricted only in neurons in developing and post-differentiated neural tissues, it is thought to be involved in the neuronal differentiation during development and in the maintenance of neuronal physiology in the post-differentiated neurons. In this study, we examined whether NELL2 is involved in the regulation of cell cycle and apoptosis in the hippocampal neuroprogenitor HiB5 cells. Methods : Effects of NELL2 on the cultured HiB5 cell numbers, DNA fragmentation, and proteins involved in the regulation of the cell cycle were measured. Results : NELL2 induced a decrease in cell numbers and an increase in G1 phase arrest. Moreover, transfection of NELL2 resulted in an increase of DNA fragmentation that shows an evidence of apoptosis. Contents of proteins involved in the regulation of cell cycle were also changed by transfection of NELL2 expression vectors. Conclusion : This study suggests that NELL2 plays an important role in the regulation of cell cycle and apoptosis of neurons.

β3GnT8 Regulates Laryngeal Carcinoma Cell Proliferation Via Targeting MMPs/TIMPs and TGF-β1

  • Hua, Dong;Qin, Fang;Shen, Li;Jiang, Zhi;Zou, Shi-Tao;Xu, Lan;Cheng, Zhi-Hong;Wu, Shi-Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2087-2093
    • /
    • 2012
  • Previous evidence showed ${\beta}1$, 3-N-acetylglucosaminyltransferase 8 (${\beta}3GnT8$), which can extend polylactosamine on N-glycans, to be highly expressed in some cancer cell lines and tissues, indicating roles in tumorigenesis. However, so far, the function of ${\beta}3GnT8$ in laryngeal carcinoma has not been characterized. To test any contribution, Hep-2 cells were stably transfected with sense or interference vectors to establish cell lines that overexpressed or were deficient in ${\beta}3GnT8$. Here we showed that cell proliferation was increased in ${\beta}3GnT8$ overexpressed cells but decreased in ${\beta}3GnT8$ knockdown cells using MTT. Furthermore, we demonstrated that change in ${\beta}3GnT8$ expression had significant effects on tumor growth in nude mice.We further provided data suggesting that overexpression of ${\beta}3GnT8$ enhanced the expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) at both the mRNA and protein levels, associated with shedding of tissue inhibitors of metalloproteinase TIMP-2. In addition, it caused increased production of transforming growth factor beta 1 (TGF-${\beta}1$), whereas ${\beta}3GnT8$ gene knockdown caused the reverse effect. The results may indicate a novel mechanism by which effects of ${\beta}3GnT8$ in regulating cellular proliferation are mediated, at least in partvia targeting MMPs/TIMPs and TGF-${\beta}1$ in laryngeal carcinoma Hep-2 cells. The finding may lay a foundation for further investigations into the ${\beta}3GnT8$ as a potential target for therapy of laryngeal carcinoma.

Molecular cloning and characterization of β-1,3-glucanase gene from Zoysia japonica steud (들잔디로부터 β-1,3-glucanase 유전자의 클로닝 및 특성분석)

  • Kang, So-Mi;Kang, Hong-Gyu;Sun, Hyeon-Jin;Yang, Dae-Hwa;Kwon, Yong-Ik;Ko, Suk-Min;Lee, Hyo-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.43 no.4
    • /
    • pp.450-456
    • /
    • 2016
  • Rhizoctonia leaf blight (large patch) has become a serious problem in Korean lawn grass, which is extremely hard to treat and develops mostly from the roots of lawn grass to wither it away. Rhizoctonia leaf blight (large patch) is caused by Rhizoctonia solani AG2-2 (IV). To develop zoysia japonica with strong disease tolerance against this pathogenic bacterium, ${\beta}-1,3-glucanase$ was cloned from zoysia japonica, which is one of the PR-Proteins known to play a critical role in plant defense reaction. ${\beta}-1,3-glucanase$ is known to be generated within the cells when plant tissues have a hypersensitive reaction due to virus or bacterium infection and secreted outside the cells to play mainly the function of resistance against pathogenic bacteria in the space between the cells. This study utilized the commonly preserved part in the sequence of corn, wheat, barley, and rice which had been researched for their disease tolerance among the ${\beta}-1,3-glucanase$ monocotyledonous plants. Based on the part, degenerate PCR was performed to find out the sequence and full-length cDNA was cloned. E.coli over-expression was conducted in this study to mass purify target protein and implement in vitro activation measurement and antibacterial test. In addition, to interpret the functions of ZjGlu1 gene, each gene-incorporating plant transformation vectors were produced to make lawn grass transformant. Based on ZjGlu1 protein, antibacterial activity test was conducted on 9 strains. As a result, R. cerealis, F. culmorum, R.solani AG-1 (1B), and T. atroviride were found to have antibacterial activity. The gene-specific expression amount in each organ showed no huge difference in the organs based upon the transformant and against 18s gene expression amount.

Triptolide-induced Transrepression of IL-8 NF-${\kappa}B$ in Lung Epithelial Cells (폐상피세포에서 Triptolide에 의한 NF-${\kappa}B$ 의존성 IL-8 유전자 전사활성 억제기전)

  • Jee, Young-Koo;Kim, Yoon-Seup;Yun, Se-Young;Kim, Yong-Ho;Choi, Eun-Kyoung;Park, Jae-Seuk;Kim, Keu-Youl;Chea, Gi-Nam;Kwak, Sahng-June;Lee, Kye-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.1
    • /
    • pp.52-66
    • /
    • 2001
  • Background : NF-${\kappa}B$ is the most important transcriptional factor in IL-8 gene expression. Triptolide is a new compound that recently has been shown to inhibit NF-${\kappa}B$ activation. The purpose of this study is to investigate how triptolide inhibits NF-${\kappa}B$-dependent IL-8 gene transcription in lung epithelial cells and to pilot the potential for the clinical application of triptolide in inflammatory lung diseases. Methods : A549 cells were used and triptolide was provided from Pharmagenesis Company (Palo Alto, CA). In order to examine NF-${\kappa}B$-dependent IL-8 transcriptional activity, we established stable A549 IL-8-NF-${\kappa}B$-luc. cells and performed luciferase assays. IL-8 gene expression was measured by RT-PCR and ELISA. A Western blot was done for the study of $I{\kappa}B{\alpha}$ degradation and an electromobility shift assay was done to analyze NF-${\kappa}B$ DNA binding. p65 specific transactivation was analyzed by a cotransfection study using a Gal4-p65 fusion protein expression system. To investigate the involvement of transcriptional coactivators, we perfomed a transfection study with CBP and SRC-1 expression vectors. Results : We observed that triptolide significantly suppresses NF-${\kappa}B$-dependent IL-8 transcriptional activity induced by IL-$1{\beta}$ and PMA. RT-PCR showed that triptolide represses both IL-$1{\beta}$ and PMA-induced IL-8 mRNA expression and ELISA confirmed this triptolide-mediated IL-8 suppression at the protein level. However, triptolide did not affect $I{\kappa}B{\alpha}$ degradation and NF-$_{\kappa}B$ DNA binding. In a p65-specific transactivation study, triptolide significantly suppressed Gal4-p65T Al and Gal4-p65T A2 activity suggesting that triptolide inhibits NF-${\kappa}B$ activation by inhibiting p65 transactivation. However, this triptolide-mediated inhibition of p65 transactivation was not rescued by the overexpression of CBP or SRC-1, thereby excluding the role of transcriptional coactivators. Conclusions : Triptolide is a new compound that inhibits NF-${\kappa}B$-dependent IL-8 transcriptional activation by inhibiting p65 transactivation, but not by an $I{\kappa}B{\alpha}$-dependent mechanism. This suggests that triptolide may have a therapeutic potential for inflammatory lung diseases.

  • PDF

Isolation of Myrosinase and Glutathione S-transferase Genes and Transformation of These Genes to Develop Phenylethylisothiocyanate Enriching Chinese Cabbage (배추에서 항암물질 phenylethylisothiocyanate의 다량 합성을 위한 myrosinase와 glutathione S-transferase 유전자 분리 및 이를 이용한 형질전환체 육성)

  • Park, Ji-Hyun;Lee, Su-Jin;Kim, Bo-Ryung;Woo, Eun-Teak;Lee, Ji-Sun;Han, Eun-Hyang;Lee, Youn-Hyung;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.29 no.6
    • /
    • pp.623-632
    • /
    • 2011
  • To increase the anti-carcinogens phenylethylisothiocyanate (PEITC), myrosinase (MYR), and glutathione S-transferase (GST), genes related to PEITC pathway were isolated and the gene expressions were regulated by Agrobacterium transformation. Isolated cDNAs, MYR, and GST genes were 1,647 bp and 624 bp, respectively, and the protein expression was confirmed through pET system. Thereafter, we constructed a sense-oriented over-expressing myrosinase (pBMY) and RNAi down-regulated GST (pJJGST) binary vectors for the Chinese cabbage transformation. After the transformation, thirteen over-expressing transgenic Chinese cabbage plants (IMS) with pBMY and five down-regulated ones (IGA) with pJJGST were selected by PCR analysis. Selected $T_0$ transgenic plants were generated to $T_1$ plants by self-pollination. Based on the Southern blot analysis on these $T_1$ transgenic plants, 1-4 copies of T-DNA were transferred to Chinese cabbage genome. Thereafter, RNA expression level of myrosinase gene or GST gene was analyzed through real-time RT PCR of IMS, IGA, and non-transgenic inbred lines. In case of IMS lines, myrosinase gene was increased 1.03-4.25 fold and, in IGA lines, GST gene was decreased by 26.42-42.22 fold compared to non-transgenic ones, respectively. Analysis of PEITC concentrations using GC-MS it showed that some IMS lines and some IGA lines increased concentrations of PEITC up to 4.86 fold and up to 3.89 fold respectively compared to wild type. Finally in this study IMS 1, 3, 5, 12, and 15 and IGA 1, 2, and 4 were selected as developed transgenic lines with increasing quantities of anti-carcinogen PEITC.

Developmental Genetic Analysis of Avian Primordial Germ Cells and the Application to Poultry Biotechnology

  • Kagami, H.
    • Korean Journal of Poultry Science
    • /
    • v.28 no.2
    • /
    • pp.135-142
    • /
    • 2001
  • A novel sterategy has been established to determine the origin of the Primordial Germ Cells (PGCs) in avian embryos directly and the developmental fate of the PGCs for the application to Poultry biotechnology. Cells were removed from 1) the centre of area pellucida, 2) the outer of area pellucida and 3) the area opaca of the stage X blastoderm (Eyal-Giladi & Kochav, 1976). When the cells were removed from the centre of area pellucida, the mean number of circulating PGCs in blood was significantly decreased in the embryo at stage 15 (Hamburger & Hamilton, 1951) as compared to intact embryos. When the cells were replenished with donor cells, no reduction in the PGCs number was observed. The removal of cells at the outer of area pellucida or at the area opaca had no effect on the number of PGCs. In case, another set of the manipulated embryos were cultured ex vivo to the hatching and reared to the sexual maturity, the absence of germ cells and degeneration of seminiferous tubules was observed in resulting chickens derived from the blastoderm in which the cells were removed from the centre of the area pellucida. It was concluded that the avian Primordial Germ cells are originated at the center of area pellucida. Developmental ability of the cells to differentiate into somatic cells and germ cells in chimeras were analyzed. Somatic chimerism was detected as black feather attributed from donor cells. Molecular identification by use of female - specific DNA was performed. It was confirmed that the donor cells could be differentiated into chimeric body and erythrocytes. Donor cells retained the ability to differentiate into germline in chimeric gonads. More than 70% of the generated chimeras transmitted donor derived gametes to their offspring indicating that the cells at the center of area pellucida had the high ability to differentiate into germ cells. A molecular technique to identify germline chimerism has been developed by use of gene scan analysis. Strain specific DNA fragments were amplified by the method. It would be greatly contributed for the detection of germline chimerism. Mixed- sex chimeras which contained both male and female cells were produced to investigate the developmental fate of male and female cells in ovary and testes. The sex combinations of donor and recipient of the resulting chimeras were following 4 pairs; (1) chimeras (ZZ/ZZ) produced by a male donor (ZZ) and a male recipient (ZZ), (2) chimeras (ZW/ZW) produced by a female donor (ZW) and a female recipient (ZW), (3) chimeras (ZZ/ZW) Produce by a male donor (ZZ) and a female recipient (ZW), (4) chimeras (ZW/ZZ) produced by a female donor (ZW) and a male recipient (ZZ). It was found that genetically male avian germ cells could differentiate into functional ova and that genetically female germ cells can differentiate into functional spermatozoa in the gonad of the mixed- sex chimeras. An ability for introduction of exogenous DNA into the PGCs from stage X blastoderms were analyzed. Two reporter genes, SV-$\beta$gal and RSV-GFP, were introduced into the PGCs. Expression of bacterial/gal was improved by complexing DNA with liposome detectedcc in 75% of embryos at 3 days embryos. At the embryos incubated for 1 day, expression of the GFP was observed all the embryos. At day 3 of incubation, GFP was detected in about 70% of the manipulated embryos. In case of GFP, expression of the transgene was detected in 30 %e of the manipulated embryos. These results suggested that the cells is one of the most promising vectors for transgenesis. The established strategy should be very powerfull for application to poultry biotechnology.

  • PDF

Effect of Immune System on Retrovirus-Mediated Herpes Simplex Virus Thymidine Kinase Gene Therapy (면역체계가 Retroviral Vector로 이입한 Herpes Simplex Virus Thymidine Kinase 유전자치료에 미치는 영향)

  • Park, Jae-Yong;Joo, So-Young;Chang, Hee-Jin;Son, Ji-Woong;Kim, Kwan-Young;Kim, Keong-Seok;Kim, Chang-Ho;Park, Jae-Ho;Lee, Jong-Ki;Jung, Tae-Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.2
    • /
    • pp.229-240
    • /
    • 1999
  • Background: The impact of the immune response on cancer gene therapy using viral vectors to deliver a "suicide gene" is currently unclear. A vigrous immune response targeted at viral proteins or transgene may enhance the efficacy of tumor destruction and even augment responses to tumor antigens. These responses may involve the release of cytokines and stimulation of tumor specific cytotoxic T-lymphocytes that enhance therapeutic efficacy. On the other hand, a vigorous rapid cellular immune response may destroy cells expressing the therapeutic gene and attenuate the response to therapy. Furthermore, development of neutralizing antibody responses may prevent readministration of virus, a potentially significant limitation. Evaluating the significance of these limitations in animal models and developing solutions are therefore of obvious importance. Methods: After retroviral transduction of mouse mesothelioma cell line(AB12) with Herpes Simplex Virus thymidine kinase (HSVtk) gene in vitro, subcutaneous flank tumors were established. To study the effect of intact immune system on efficacy of tumor erradication, the ability of the HSVtk/ganciclovir system to inhibit tumor growth was compared among normal Balb/c mice, immunodeficient Balb/c-nude and SCID mice, and Balb/c mice immunosuppressed with cyclosporin. Results: Ganciclovir treatment resulted in greater inhibition of tumor growth in Balb/c mice compared with immunodeficient Balb/c-nude mice and SCID mice(in immunodeficient mice, there were no growth inhibition by ganciclovir treatment). Ganciclovir treatment resulted in greater inhibition of tumor growth in noncyclosporin (CSA) treated Balb/c mice compared with CSA treated Balb/c mice. On day 8, mean ganciclovir-treated tumor volume were 65% of control tumor volume in Balb/c mice versus 77% control tumor volume in CSA-treated Balb/c mice. This effect was still evident during therapy (day 11 and 13). On day 13, non-CSA treated tumor volume was 35% of control tumor volume versus 60% of control tumor volume in CSA treated Balb/c mice. Duration of expression of HSVtk was not affected by the immunosuppression with CSA. Conclusion: These results indicate that the immune responses against retrovirally transduced cells enhance the efficacy of the HSVtk/ganciclovir system. These findings have important implications for clinical trials using currently available retrovirus vectors as well as for future vector design.

  • PDF