Isolation of Myrosinase and Glutathione S-transferase Genes and Transformation of These Genes to Develop Phenylethylisothiocyanate Enriching Chinese Cabbage

배추에서 항암물질 phenylethylisothiocyanate의 다량 합성을 위한 myrosinase와 glutathione S-transferase 유전자 분리 및 이를 이용한 형질전환체 육성

  • Park, Ji-Hyun (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Lee, Su-Jin (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Kim, Bo-Ryung (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Woo, Eun-Teak (Breeding Research Institute, Carrotop Seed Co.) ;
  • Lee, Ji-Sun (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Han, Eun-Hyang (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Lee, Youn-Hyung (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Park, Young-Doo (Department of Horticultural Biotechnology, Kyunghee University)
  • 박지현 (경희대학교 생명과학대학 원예생명공학과) ;
  • 이수진 (경희대학교 생명과학대학 원예생명공학과) ;
  • 김보령 (경희대학교 생명과학대학 원예생명공학과) ;
  • 우은택 (캐로톱씨드 육종연구소) ;
  • 이지선 (경희대학교 생명과학대학 원예생명공학과) ;
  • 한은향 (경희대학교 생명과학대학 원예생명공학과) ;
  • 이윤형 (경희대학교 생명과학대학 원예생명공학과) ;
  • 박영두 (경희대학교 생명과학대학 원예생명공학과)
  • Received : 2011.08.17
  • Accepted : 2011.09.27
  • Published : 2011.12.31

Abstract

To increase the anti-carcinogens phenylethylisothiocyanate (PEITC), myrosinase (MYR), and glutathione S-transferase (GST), genes related to PEITC pathway were isolated and the gene expressions were regulated by Agrobacterium transformation. Isolated cDNAs, MYR, and GST genes were 1,647 bp and 624 bp, respectively, and the protein expression was confirmed through pET system. Thereafter, we constructed a sense-oriented over-expressing myrosinase (pBMY) and RNAi down-regulated GST (pJJGST) binary vectors for the Chinese cabbage transformation. After the transformation, thirteen over-expressing transgenic Chinese cabbage plants (IMS) with pBMY and five down-regulated ones (IGA) with pJJGST were selected by PCR analysis. Selected $T_0$ transgenic plants were generated to $T_1$ plants by self-pollination. Based on the Southern blot analysis on these $T_1$ transgenic plants, 1-4 copies of T-DNA were transferred to Chinese cabbage genome. Thereafter, RNA expression level of myrosinase gene or GST gene was analyzed through real-time RT PCR of IMS, IGA, and non-transgenic inbred lines. In case of IMS lines, myrosinase gene was increased 1.03-4.25 fold and, in IGA lines, GST gene was decreased by 26.42-42.22 fold compared to non-transgenic ones, respectively. Analysis of PEITC concentrations using GC-MS it showed that some IMS lines and some IGA lines increased concentrations of PEITC up to 4.86 fold and up to 3.89 fold respectively compared to wild type. Finally in this study IMS 1, 3, 5, 12, and 15 and IGA 1, 2, and 4 were selected as developed transgenic lines with increasing quantities of anti-carcinogen PEITC.

본 연구는 배추에서 항암물질 PEITC의 함량을 높이기 위하여 PEITC 대사과정에서 관련 유전자인 myrosinase (MYR)와 Glutathione S-transferase(GST) 유전자를 분리하고 Agrobacterium tumefacien 형질전환 방법을 통하여 유전자 발현을 조절하였다. 분리된 MYR과 GST의 cDNA는 각각 1647bp와 624bp임을 확인하였고 pET system으로 단백질의 발현을 확인하였다. 형질전환을 위해서 MYR-과발현 벡터와 GST-발현억제 벡터를 제작하였으며 이를 이용하여 배추에 형질전환한 후 PCR 검정을 통해 MYR-과발현 벡터로 형질전환된 개체(IMS) 13개체를 GST-발현억제 벡터로 형질전환된 개체(IGA) 5개체를 선발하였다. 선발된 $T_0$ 개체는 $T_1$ 세대로 진전시켰으며 $T_1$ 형질전환 계통의 서던분석 결과 배추 genome내로 1-4 copy의 T-DNA가 삽입된 것을 확인하였다. 유전자 발현양을 real-time RT PCR로 조사한 결과 IMS는 발현량이 1.03-4.25배 증가하였고 IGA는 26.42-42.22배 감소하였다. IMS와 IGA의 각 계통에서 PEITC의 농도를 GC-MS 방법을 이용하여 확인한 결과 IMS는 PEITC 함량이 형질전환이 되지 않은 대조군에 비해 최대 4.86배까지 증가한 계통을 확인하였고 IGA는 최대 3.89배까지 증가된 계통을 확인하였다. 최종적으로 본 연구를 통하여 항암물질 PEITC량의 증가를 보인 형질전환계통 IMS 1, 3, 5, 12, 15 및 IGA 1, 2, 4를 선발하였다.

Keywords

References

  1. Armstrong, R.N. 1997. Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem. Res. Toxicol. 10:2-18. https://doi.org/10.1021/tx960072x
  2. Barrett, T., C.G. Suresh, S.P. Tolley, E.J. Dodson, and M.A. Hughes. 1995. The crystal structure of a cyanogenic $\beta$-glucosidase from white sweet clover, a family 1 glycosyl hydrolase. Structure 3:951-960. https://doi.org/10.1016/S0969-2126(01)00229-5
  3. Bones, A.M. 1990. Distribution of $\beta$-thioglucosidase activity in intact plants, cell and tissue cultures and regenerant plants of Brassica napus L. J. Exp. Bot. 41:737-744. https://doi.org/10.1093/jxb/41.6.737
  4. Burmeister, W.P., S. Cottaz, H. Driguez, R. Iori, S. Palmieri, and B. Henrissat. 1997. The crystal structure of Sinapis alba myrosinase and a covalent glycosyl-enzyme intermediate provide insights into the substrate recognition and activesite machinery of an S-glycosidase. Structure 5:663-675. https://doi.org/10.1016/S0969-2126(97)00221-9
  5. Cho, Y.G., M.Y. Eun, S.R. Mccouch, and Y.A. Chae. 1994. The semidwarf gene, sd-1, of rice (Oryza sativa L.) II molecular mapping and marker-assisted selection. Theor. Appl. Genet. 89:54-59.
  6. Czjzek, M., M. Cicek, V. Zamboni, D.R. Bevan, B. Henrissat, and A. Esen. 2000. The mechanism of substrate (aglycone) specificity in $\beta$-glucosidases is revealed by crystal structures of mutant maize $\beta$-glucosidase-DIMBOA, -DIMBOAGlc, and -dhurrin complexes. Proc. Natl. Acad. Sci. USA 97:13555- 13560. https://doi.org/10.1073/pnas.97.25.13555
  7. Dixon, D.P., L. Adrian, and E. Robert. 2002. Plant glutathione transferases. Genome Biol. 3: Reviews 3004.1-3004.10.
  8. Dixon, D.P., L. Cummins, D.J. Cole, and R. Edwards. 1998. Glutathione-mediated detoxification systems in plants. Curr. Opin. Plant Biol. 1:258-266. https://doi.org/10.1016/S1369-5266(98)80114-3
  9. Dixon, D.P., M. Skipsey, and R. Edwards. 2009. Goles for glutathione transferases in plant secondary metabolism. Phytochemistry 71:338-350.
  10. Doerr-O'Rourke, K., N. Trushin, S.S. Hecht, and G.D. Stoner. 1991. Effect of phenethyl isothiocyanate on the metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1- (3-pyridyl)-1-butanone by cultured rat lung tissue. Carcinogenesis 12:1029-1034. https://doi.org/10.1093/carcin/12.6.1029
  11. Edwards, R., D.P. Dixon, and V. Walbot. 2000. Plant glutathione S-transferases: Enzymes with multiple functions in sickness and in health. Trends Plant Sci. 5:193-198. https://doi.org/10.1016/S1360-1385(00)01601-0
  12. Eklind, K.L., M.A. Morse, and F.I. Chung. 1990. Distribution and metabolism of the natural anticarcinogen phenylethyl isothiocyanate in A/J mice. Carcinogenesis 11:2033-2036. https://doi.org/10.1093/carcin/11.11.2033
  13. Fahey, J.W., A.T. Zalcmann, and P. Talalay. 2001. The chemical diversity and distribution of glucosinolates and isothiocynates among plants. Phytochemistry 56:5-51. https://doi.org/10.1016/S0031-9422(00)00316-2
  14. Halkier, B.A. and J. Gershenzon. 2006. Biology and biochemistry of glucosinolates. Ann. Rev. Plant Biol. 57:303-333. https://doi.org/10.1146/annurev.arplant.57.032905.105228
  15. Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280:309-316.
  16. Henrissat, B. and G.J. Davies. 1997. Structural and sequence based classification of glycosyl hydrolases. Curr. Opin. Struct. Biol. 7:637-644. https://doi.org/10.1016/S0959-440X(97)80072-3
  17. Kok-Jacon, G.A., Q. Ji, J.P. Vincken, and R.G. Visser. 2003. Towards a more versatile alpha-glucan biosynthesis in plants. J. Plant Physiol. 160:765-777. https://doi.org/10.1078/0176-1617-01028
  18. Lai, K.C., S.C. Hsu, C.L. Kuo, S.W. IP, J.S. Yang, Y.M. Hsu, H.Y. Huang, S.H. Wu, and J.G. Chung. 2010. Phenethyl isothiocyanate inhibited tumor migration and invasion via suppressing multiple signal transduction pathways in human colon cancer HT29 cells. J. Agric. Food Chem. 58:11148-11155. https://doi.org/10.1021/jf102384n
  19. Lam, T.K., L. Gallicchio, L. Lindsley, M. Shiels, E. Hammond, X.G. Tao, L. Chen, K.A. Robinson, L.E. Caulfield, J.G. Herman, E. Guallar, and A.J. Alberg. 2009. Cruciferous vegetable consumption and lung cancer risk: A systematic review. Cancer Epidemiol. Biomarkers Prev. 18:184-195. https://doi.org/10.1158/1055-9965.EPI-08-0710
  20. Lambrix, V., M. Reichelt, T. Mitchell-Olds, D.J. Kliebenstein, and J. Gershenzon. 2001. The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia in herbivory. Plant Cell 13:2793-2807.
  21. Lampe, J.W. and S. Peterson. 2002. Brassica, biotransformation and cancer risk: genetic polymorphisms alter the preventive effects of cruciferous vegetables. J. Nutr. 132:2991-2994.
  22. Langouet, S., L.L. Furge, N. Kerriguy, K. Nakamura, A. Guillouzo, and F.P. Guengerich. 2000. Inhibition of human cytochrome P450 enzymes by 1,2-dithiole-3-thione, oltipraz and its derivatives, and sulforaphane. Chem. Res. Toxicol. 13:245-252. https://doi.org/10.1021/tx990189w
  23. Lee, W.S., J.A. You, H. Chung, Y.H. Lee, N.I. Baek, J.S. Yoo, and Y.D. Park. 2008. Molecular cloning and biochemical analysis of dihydroflavonol 4-reductase (DFR) from Brassica rapa ssp. pekinesis (Chinese cabbage) using a heterologous system. J. Plant Biol. 51:42-47. https://doi.org/10.1007/BF03030739
  24. Lenman, M., A. Falk, J. Xue, and L. Rask. 1993. Characterization of a Brassica napus myrosinase pseudogene: Myrosinases are members of the BGA family of $\beta$-glycosidases. Plant Mol. Biol. 21:463-474. https://doi.org/10.1007/BF00028804
  25. Livak, K.J. and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T))method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  26. Marrs, K.A. 1996. The functions and regulation of glutathione S-transferases in plants. Plant Mol. Biol. 47:127-158. https://doi.org/10.1146/annurev.arplant.47.1.127
  27. Mccouch, S.R., G. Kochert, Z.H. Yu, Z.Y. Wang, G.S. Khush, W.R. Coffman, and S.D. Tanksley. 1988. Molecular mapping of rice chromosomes. Theor. Appl. Genet. 76:815-829. https://doi.org/10.1007/BF00273666
  28. Miki, D., R. Itoh, and K. Shimamoto. 2005. RNA silencing of single and multiple members in a gene family of rice. Plant Physiol. 138:1903-1913. https://doi.org/10.1104/pp.105.063933
  29. Rosche, E., D. Blackmore, M. Tegeder, T. Richardson, H. Schroeder, T.J. Higgins, W.B. Frommer, C.E. Offler, and J.W. Patrick. 2002. Seed-specific overexpression of a potato sucrose transporter increases sucrose uptake and growth rates of developing pea cotyledons. Plant J. 30:165-175. https://doi.org/10.1046/j.1365-313X.2002.01282.x
  30. Sheehan, D., G. Meade, V.M. Foley, and C.A. Dowd. 2001. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J. 360:1-16. https://doi.org/10.1042/0264-6021:3600001
  31. Sin, S.F., E.C. Yeung, and M.L. Chye. 2006. Downregulation of Solanum americanum genes encoding proteinase inhibitor II causes defective seed development. Plant J. 45:58-70. https://doi.org/10.1111/j.1365-313X.2005.02597.x
  32. Stoner, G.D., D.T. Morrissey, Y.H. Heur, E.M. Daniel, A.J. Galati, and S.A. Wagner. 1991. Inhibitory effects of phenetyl isothiocyanate on N-nitrosobenzylmethylamine carcinogenesis in the rat esophagus. Cancer Res. 51:2063-2068.
  33. Thangstad, O.P., P. Winge, H. Husebye, and A. Bones. 1993. The myrosinase (thioglucoside glucohydrolase) gene family in Brassicaceae. Plant Mol. Biol. 23:511-524. https://doi.org/10.1007/BF00019299
  34. Thornalley, P.J. 2002. Isothiocyanates: Mechanism of cancer chemopreventive action. Anti-cancer Drugs 13:331-338. https://doi.org/10.1097/00001813-200204000-00001
  35. Tseng, E., E.A. Scott-Ramsay, and M.E. Morris. 2004. Dietary organic isothiocyanates are cytotoxic in human breast cancer MCF-7 and mammary epithelial MCF-12A cell lines. Exp. Biol. Med. 229:835-842.
  36. Tuteja, J.H., G. Zabala, K. Varala, M. Hudson, and L.O. Vodkin. 2009. Endogenous, tissue-specific short interfering RNAs silence the chalcone synthase gene family in glycine max seed coats. Plant Cell 21:3063-3077. https://doi.org/10.1105/tpc.109.069856
  37. Wu, X., O.H. Zhou, and K. Xu. 2009. Are isothiocyanates potential anti-cancer drugs? Acta Pharmacol. Sin. 30:501-512. https://doi.org/10.1038/aps.2009.50
  38. Xu, C., G. Shen, X. Yuan, J.H. Kim, A. Gopalkrishnan, Y.S. Keum, S. Nair, and A.N. Kong. 2006. ERK and JNK signaling pathways are involved in the regulation of activator protein 1 and cell death elicited by three isothiocyanates in human prostate cancer PC-3 cells. Epub. 27:437-445.
  39. Xue, J., M. Jorgensen, U. Philgren, and L. Rask. 1995. The myrosinase gene family in Arabidopsis thaliana: gene organization, expression and evolution. Plant Mol. Biol. 27:911-922. https://doi.org/10.1007/BF00037019
  40. Yu, R., J.J. Jiao, J.L. Duh, T.H. Tan, and A.N. Kong. 1996. Phenethyl isothiocyanate, a natural chemopreventive agent, activates c-Jun N-terminal kinase 1. Cancer Res. 56:2954-2959.
  41. Zhang, J., B. Pontoppidan, J. Xue, L. Rask, and J. Meijer. 2002. The third myrosinase gene TGG3 in Arabidopsis thaliana is a pseudogene specificially expressed in stamen and petal. Physiol. Plant 115:25-34. https://doi.org/10.1034/j.1399-3054.2002.1150103.x
  42. Zhang, Z., J.A. Ober, and D.J. Kliebenstein. 2006. The gene controlling the quantitative trait locus epithiospecifer modifer 1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18:1524-1536. https://doi.org/10.1105/tpc.105.039602