DOI QR코드

DOI QR Code

Molecular cloning and characterization of β-1,3-glucanase gene from Zoysia japonica steud

들잔디로부터 β-1,3-glucanase 유전자의 클로닝 및 특성분석

  • Kang, So-Mi (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Kang, Hong-Gyu (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Sun, Hyeon-Jin (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Yang, Dae-Hwa (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Kwon, Yong-Ik (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Ko, Suk-Min (BVC, Korea Research Institute of Bioscience & Biotechnology) ;
  • Lee, Hyo-Yeon (Subtropical Horticulture Research Institute, Jeju National University, Faculty of Biotechnology, Jeju National University)
  • 강소미 (제주대학교 아열대원예산업연구소) ;
  • 강홍규 (제주대학교 아열대원예산업연구소) ;
  • 선현진 (제주대학교 아열대원예산업연구소) ;
  • 양대화 (제주대학교 아열대원예산업연구소) ;
  • 권용익 (제주대학교 아열대원예산업연구소) ;
  • 고석민 ;
  • 이효연 (제주대학교 아열대원예산업연구소, 제주대학교 분자생명공학전공)
  • Received : 2016.12.12
  • Accepted : 2016.12.20
  • Published : 2016.12.31

Abstract

Rhizoctonia leaf blight (large patch) has become a serious problem in Korean lawn grass, which is extremely hard to treat and develops mostly from the roots of lawn grass to wither it away. Rhizoctonia leaf blight (large patch) is caused by Rhizoctonia solani AG2-2 (IV). To develop zoysia japonica with strong disease tolerance against this pathogenic bacterium, ${\beta}-1,3-glucanase$ was cloned from zoysia japonica, which is one of the PR-Proteins known to play a critical role in plant defense reaction. ${\beta}-1,3-glucanase$ is known to be generated within the cells when plant tissues have a hypersensitive reaction due to virus or bacterium infection and secreted outside the cells to play mainly the function of resistance against pathogenic bacteria in the space between the cells. This study utilized the commonly preserved part in the sequence of corn, wheat, barley, and rice which had been researched for their disease tolerance among the ${\beta}-1,3-glucanase$ monocotyledonous plants. Based on the part, degenerate PCR was performed to find out the sequence and full-length cDNA was cloned. E.coli over-expression was conducted in this study to mass purify target protein and implement in vitro activation measurement and antibacterial test. In addition, to interpret the functions of ZjGlu1 gene, each gene-incorporating plant transformation vectors were produced to make lawn grass transformant. Based on ZjGlu1 protein, antibacterial activity test was conducted on 9 strains. As a result, R. cerealis, F. culmorum, R.solani AG-1 (1B), and T. atroviride were found to have antibacterial activity. The gene-specific expression amount in each organ showed no huge difference in the organs based upon the transformant and against 18s gene expression amount.

한국형 잔디에서는 다른 병에 비해 진전 속도가 빠르고 주로 뿌리에서부터 발병하여 잔디를 고사시키고 발병 후 구제하기 매우 어려운 라이족토니아잎마름병(라지패취)이 큰 문제로 대두되고 있다. 라이족토니아잎마름병(라지패취)은 Rhizoctonia solani AG2-2 (IV)병원균에 의해 발생하는데, 이 병원균에 강한 내병성 들잔디를 개발하기 위해 식물방어반응에 중요한 역할을 하는 것으로 알려진 PR-Protein 중 하나인 ${\beta}-1,3-glucanase$를 들잔디로부터 클로닝 하였다. ${\beta}-1,3-glucanase$는 바이러스나 균의 감염으로 인해 식물조직이 과민반응을 일으킬 때 세포내에서 생성되고 세포 외로 분비되어 세포 사이 공간에서 주로 병원균 저항성기능을 하는 것으로 알려져 있다. ${\beta}-1,3-glucanase$ 단자엽식물 중 내병성에 대한 연구가 되어있는 옥수수, 밀, 보리, 벼의 염기서열에서 공통으로 보존되어 있는 부분을 이용해 degenerate PCR을 수행하고 얻어낸 sequence를 통해 Full-length의 cDNA를 클로닝 하였다. E.coli overexpression을 수행하여 목표 단백질을 대량 정제하여 in vitro 활성 측정 및 항균테스트를 진행하였다. 또한, ZjGlu1 유전자의 기능을 해석하기 위해 각각의 유전자를 도입한 식물형질전환용 벡터를 제작하여 잔디 형질전환체 제작을 하였다. ZjGlu1 단백질을 이용하여 9개의 균주에 대해 항균활성 테스트를 진행 한 결과 R. cerealis, F. culmorum, R.solani AG-1 (1B), T. atroviride 에서 항균활성을 보였으며, 형질전환체를 이용해 18s 유전자의 발현량을 상대로 한 각 유전자의 기관별 발현량은 크게 차이없이 모든기관에 발현되는 것을 확인할 수 있었다.

Keywords

References

  1. Bae EJ, Lee KS, Kim DS, Han EH, Lee SM, Lee DW (2013) Sod Productio and Current Status of Cultivation Management in Korea. Weed & Turfgrass Science 2(1):95-99 https://doi.org/10.5660/WTS.2013.2.1.095
  2. Bo Liu, Xiaodan Xue, Suping Cui, Xiaoyu Zhang, Qingmei Han, Lin Zhu, Xiaofei Liang, Xiaojie Wang, Lili Huang, Xiamning Chen, Zhensheng Kang (2010) Cloning and characterization of a wheat ${\beta}$-1,3-glucanase gene induced by the stripe rust pathogen pucinia striiformis F. sp. Tritici. Mol Biol Rep 37:1045-1052 https://doi.org/10.1007/s11033-009-9823-9
  3. Cheong YH, Kim CY, Chun HJ, Moon BC, Park HC, Kim JK, Lee S, Han C, Lee SY, Cho MJ (2000) Molecular cloning of a soybean class III beta-1,3-glucanase gene that is regulated both developmentally and in response to pathogen infection. Plant Sci 154(1):71-81 https://doi.org/10.1016/S0168-9452(00)00187-4
  4. Choi HW, Kim NH, Lee YK, Hwang BK (2013) The pepper Extracelluar Xyloglucan-Specific Endo-1,4-Glucanase Inhibitor Protein Gene, CaXEGIP1, Is Required for Plant Cell Death and Defense Reponses. Plant Physiol 161:384-396 https://doi.org/10.1104/pp.112.203828
  5. Claude P, Selitrennikoff (2001) Antifungal Proteins. Appl Environ Microb 67:2883-2894 https://doi.org/10.1128/AEM.67.7.2883-2894.2001
  6. Deannna L. Funnell, Christopher B. Ljawrence, Jeffery F. Pedersen, Christopher L. Schardl (2004) Expression of the tovacco ${\beta}$-1,3-glucanase gene, PR-2d, following induction of SAR with peronospora tabacina. Physiol Mol Plant P 65:285-296 https://doi.org/10.1016/j.pmpp.2005.02.010
  7. Ganapathi Sridevi, Chidambaram Parameswari, Natarajan, Sabapathi, Vengoji Raghupathy, Karuppannan Veluthambi (2008) Combined expression of chitinase and ${\beta}$-1,3-glucanase genes in indica rice (Oryza sativa L.) enhances resistance against Rhizoctonia solani. Plant Sci 275:283-290
  8. Ganesan M, Han YJ, Bae TW, Hwang OJ, Chandrasekkhar T, Shin AY, Goh CH, Nishiguchi S, Song IJ, Lee HY, Kim JI, and Song PS (2012) Overexpression of phytochrome A and its hyperactive mutant improves shade tolerance and turf quality in creeping bentgrass and zoysiagrass. Planta 236:1135-1150 https://doi.org/10.1007/s00425-012-1662-6
  9. Gerhard Leubner-metzger and Frederick Meins Jr. (1999) Fuctions and regulation of plant ${\beta}$-1,3-glucanase (PR-2)
  10. Irene Romero, Carlos Fernandez-Caballero, Oscar Goni, M. Isabel Escribano, Carmen Merodio, M. Teresa Sanchez-Ballesta (2008) Functionality of a class I beta-1,3-glucanase from skin of table grapes berries. Plant Sci 174:641-648 https://doi.org/10.1016/j.plantsci.2008.03.019
  11. Janice Lisboa de Marco and Carlos Roverto Felix (2007) Purification and Chracterization of a ${\beta}$-Glucanase Produced by Trichoderma harzianim showing Biocontrol Potential. Braz Arch Biol Techn 50:21-29 https://doi.org/10.1590/S1516-89132007000100003
  12. Kang JY, Kim DH, Lee DG, Kim IS, Jeon MG, Lee JD, Kim IH, Lee S (2013) Screening of Antifungal Activities of Medicinal Plants for the Control of Turfgrass Fungal Disease. Weed & Turfgrass Science 2(1):70-75 https://doi.org/10.5660/WTS.2013.2.1.070
  13. Kim DS, Lee KS, Bae EJ, Hwang JY, Kwak YS, Lee DW, Lee SM Park YB (2013) Disease and weed occurring in zoysiagrass. National institute of forest science 517
  14. Korea forest service 2012
  15. Lee JP, Kim SJ, Seo HY, Lee SJ, Jeong JI et al. (2001) Contribution of turfgrass industry to the economy in Florida state and present and future of Korea turfgrass industry. Korean Turfgrass Science 15:187-198 (In Korean)
  16. Lee SM, Kim DS, Lee KS, Lee CK, Lee DW (2013) Antibiotic Properties of Helicosporium sp. KCTC 063BP to Rhizoctonia solani AG2-2 (IV). Weed & Turfgrass Science 2(2):202-206 https://doi.org/10.5660/WTS.2013.2.2.202
  17. Mahmoud WF, Yaish, Andrew C. Doxey, Brendan J. McConkey, Barbara A. Moffatt, Marilyn Griffith (2006) Cold-Active Winter Rye Glucanases with Ice-Binding Capacity1,2. Plant Physiol 141:459-1472, 1 https://doi.org/10.1104/pp.106.081935
  18. Olli S, Kirti PB (2006) Cloning, Chracterization and Antifungal Activity of Defensin Tfgd1 from Trigonella foenum-graecum L. J Biochem Mol Biol 39:278-283
  19. Qiao LX, Ding X, Wang HC, Sui JM, Wang JS (2014) Chracterization of the ${\beta}$-1,3-glucanase gene in peanut(Archis hypogaea L.) by cloning and genetic transformation. Genetics and Molecular Research 13:1893-1904 https://doi.org/10.4238/2014.March.17.17
  20. Robert Leah, Henrik Tommerup, Ib Svendsen, John Mundy (1991) Biochemical and Molecular Characterization of Three Barley Seed Proteins with Antifungal Properties. J Biol Chem 266(3):1564-1573
  21. Rui Cheng, Linxiang Xu, Shiming Wang, Yang Wang, Jianfa Zhang (2014) Recombinant expression and characterization of an acid-, alkali- and slat-tolerant ${\beta}$-1,3-1,4-glucanase from Paenibacillus sp. S09. Biotechnol Lett 36:797-803 https://doi.org/10.1007/s10529-013-1413-1
  22. Saboki Ebrahim, K. Usha, Bhupinder Singh (2011) Pathogenesis Related(PR) Proteins in Plant Defense Mechanism. Science against microbial pathogens; communicating current research and technological advanced
  23. Shi Y, Zhang Y, Shin DS (2006) Cloning and expression analysis of two ${\beta}$-1,2-glucanase genes from strawberry. J Plant physiol 163:956-967 https://doi.org/10.1016/j.jplph.2005.09.007
  24. Toyama K, Bae CH, Kang GJ, Lim YP, Adachi T, Riu KZ, Song PS, Lee HY (2003) Production of Herbicide-tolerant Zoysiagrass by Agrobacterium-mediated Transformation. Mol Cells 16:19-27
  25. Vaiyapuri Balansubramanian, Divya Vashisht, Jean Cletus, Natarajan Sakthivel (2012) Plant ${\beta}$-1,3-glucanase: their biology functions and transgenic expression against phytopathogenic fungi, Biotechnol Lett 34:1983-1990 https://doi.org/10.1007/s10529-012-1012-6
  26. Vivek Dogra, Yelam Sreenivasulu (2015) Cloning and functional characterization of ${\beta}$-1,3-glucanase gene from Podophyllum hexandrum - A high altitude Himalayan plant. Gene 554:25-31 https://doi.org/10.1016/j.gene.2014.10.012
  27. Xie YR, Raruang Y, Chen ZY, Brown RL, Cleveland TE (2015) ZmGns, a maize class I ${\beta}$-1,3-glucanase, is induced by biotic stresses and possesses strong antimicrobial activity. J Integr Plant Biol, 57(3):271-83 https://doi.org/10.1111/jipb.12286