• Title/Summary/Keyword: Expression Strategies

Search Result 526, Processing Time 0.03 seconds

Designing of the Statistical Models for Imprinting Patterns of Quantitative Traits Loci (QTL) in Swine (돼지에 있어서 양적 형질 유전자좌(QTL) 발현 특성 분석을 위한 통계적 검정 모형 설정)

  • Yoon D. H.;Kong H. S.;Cho Y. M.;Lee J. W.;Choi I. S.;Lee H. K.;Jeon G. J.;Oh S. J.;Cheong I. C.
    • Journal of Embryo Transfer
    • /
    • v.19 no.3
    • /
    • pp.291-299
    • /
    • 2004
  • Characterization of quantitative trait loci (QTL) was investigated in the experimental cross population between Berkshire and Yorkshire breed. A total of 512 F$_2$ offspring from 65 matting of F$_1$ parents were phenotyped the carcass traits included average daily gain (ADG), average backfat thickness (ABF), tenth rip backfat thickness (TRF), loin eye area (LEA), and last rip backfat thickness (LRF). All animals were genotyped for 125 markers across the genome. Marker linkage maps were derived and used in QTL analysis based on line cross least squares regression interval mapping. A decision tree to identify QTL with imprinting effects was developed based on tests against the Mendelian mode of QTL expression. To set the evidence of QTL presence, empirical significance thresholds were derived at chromosome-wise and genome-wise levels using specialized permutation strategies. Significance thresholds derived by the permutation test were validated in the data set based on simulation of a pedigree and data structure similar to the Berkshire-Yorkshire population. Genome scan revealed significant evidences for 13 imprinted QTLs affecting growth and body compositions of which nine were identified to be QTL with paternally expressed inheritance mode. Four of QTLs in the loin eye area (LEA), and tenth rip backfat thickness (TRF), a maternally expressed QTL were found on chromosome 10 and 12. These results support the useful statistical models to analyse the imprinting far the QTLs related carcass trait.

Relationships Between Using Rate of Information Media on Diversion by Traffic Condition (소통상황에 따른 정보매체별 우회이용률 분석)

  • Choe, Yun-Hyeok;Choe, Gi-Ju;Go, Han-Geom
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.1
    • /
    • pp.39-49
    • /
    • 2010
  • Although many studies have been carried out on the pattern of behavior of drivers which result from the provision of traffic information, there have been few detailed studies on the composition of message, method for message expression, timing of provision, point of provision, media for provision, changes by traffic condition, etc. This study was intended to provide an insight into the changes in the characteristics related to the provision of information by analyzing how the patterns of information utilization change depending on the traffic condition and reclassifying such patterns according to the characteristics of media. Unlike the existing studies, this study adopted the traffic condition, using rate of information media, and the correlation coefficient label as the basis for information media classification, and categorized them into passive utilization media, active utilization media, and past experience in order to ensure the statistical reasonability. The categorized using rate of information media and traffic condition was found to have a positive(+) correlation with the travel speed in the case of passive utilization media during both consecutive holidays(Korea's traditional Thanksgiving day) and weekends, but had a negative(-) correlation with the positive utilization media and past experience. The rate of decision to take a detour based on the past experience was high at the condition of congestion or slow during both consecutive holidays and weekends, but the rate of decision to take a detour through passive utilization media was high in a smooth traffic. In other words, if the traffic condition worsens, using rate of passive utilization media would be low while the diversion rate would be high which uses the active utilization media and past experience. Therefore, it should be established to suit the traffic condition and media characteristics for strategies of traffic distribution through drivers' diversion behavior on weekends and consecutive holidays.

Transcriptional and Nontranscriptional Regulation of NIS Activity and Radioiodide Transport (NIS 기능의 전사 및 전사외 조절과 방사성옥소 섭취)

  • Jung, Kyung-Ho;Lee, Kyung-Han
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.5
    • /
    • pp.343-349
    • /
    • 2007
  • Radioiodide transport has been extensively and successfully used in the evaluation and management of thyroid disease. The molecular characterization of the sodium/iodide symporter (NIS) and cloning of the NIS gene has led to the recent expansion of the use of radioiodide to cancers of the breast and other nonthyroidal tissues exogenously transduced with the NIS gene. More recently, discoveries regarding the functional analysis and regulatory processes of the NIS molecule are opening up exciting opportunities for new research and applications for NIS and radio iodide. The success of NIS based cancer therapy is dependent on achievement of maximal radioiodide transport sufficient to allow delivery of effective radiation doses. This in turn relies on high transcription rates of the NIS gene. However, newer discoveries indicate that nontranscriptional processes that regulate NIS trafficking to cell membrane are also critical determinants of radioiodide uptake. In this review, molecular mechanisms that underlie regulation of NIS transcription and stimuli that augment membrane trafficking and functional activation of NIS molecules will be discussed. A better understanding of how the expression and cell surface targeting of NIS proteins is controlled will hopefully aid in optimizing NIS gene based cancer treatment as well as NIS based reporter-gene imaging strategies.

Quorum Quenching Enzymes and Biofouling Control (정족수 제어효소와 biofouling 제어)

  • Jeon, Young Jae;Jeong, Won-Geom;Heo, Hye-Sook
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1487-1497
    • /
    • 2016
  • Bacterial cell to cell communication strategies called quorum sensing (QS) using small diffusible signaling molecules (auto-inducers) govern the expression of various genes dependent on their population density manner. As a consequence of synthesis and response to the signaling molecules, individual planktonic cells synchronized group behaviors to control a diverse array of phenotypes such as maturation of biofilm, production of extra-polymeric substances (EPS), virulence, bioluminescence and antibiotic production. Many studies indicated that biofilm formations are associated with QS signaling molecules such as acyl-homoserine lactones (AHLs) mainly used by several Gram negative bacteria. The biofilm maturation causes undesirable biomass accumulation in various surface environments anywhere water is present called biofouling, which results in serious eco-technological problems. Numerous molecules that interfere the bacterial QS called quorum quenching (QQ), have been discovered from various microorganisms, and their functions and mechanisms associated with QS have also been elucidated. To resolve biofouling problems related to various industries, the novel approach based on QS interference has been emerged attenuating multi-drug resisting bacteria appearance and environmental toxicities, which may provide potential advantages over the conventional anti-biofouling approaches. Therefore this paper presents recent information related to bacterial quorum sensing system, quorum quenching enzymes that can control the QS signaling, and lastly discuss the anti-biofouling approaches using the quorum quenching.

Cisplatin Suppresses Proliferation of Ovarian Cancer Cells through Inhibition Akt and Modulation MAPK Pathways (Cisplatin의 난소암 세포 증식 억제에 관한 신호 전달 기전)

  • Choi, Jae-Sun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.1
    • /
    • pp.62-68
    • /
    • 2020
  • Cisplatin (CDDP) is a chemotherapy agent used for patients with ovarian cancers. CDDP activates multiple signaling pathways, which causes various cellular reactions according to the type of cancer cells. Therefore, it is difficult to clearly conclude its signaling pathways. The purpose of this study is to determine the role of the signal protein of Akt/ERK1/2 and MAPK by CDDP-induced apoptosis in ovarian cancer cells (SKOV3). As a result, the number of apoptosis increased according to the TUNEL assay, and flow cytometric analysis confirmed that the percentage of sub-G1 early apoptosis was 8.73% higher than the control. The PARP and caspase-3 activity that appeared in the process of apoptosis was increased and the Bcl-2 expression was decreased. It was verified that the Akt and ERK1/2 activity was decreased, and p38 and JNK activity increased in a time dependent fashion. In conclusion, these results demonstrate that cisplatin inhibits the proliferation of ovarian cancer cells by inhibiting Akt activity and induces apoptosis by modulating the MAPK signaling pathway. However, a decrease in the ERK1/2 activity by CDDP was the opposite result to the result shown from the HeLa cells. For this reason, further research on signaling pathways is necessary. These results are expected to be useful for ovarian cancer treatment strategies targeting the MAPK pathway.

Dieckol Attenuates Microglia-mediated Neuronal Cell Death via ERK, Akt and NADPH Oxidase-mediated Pathways

  • Cui, Yanji;Park, Jee-Yun;Wu, Jinji;Lee, Ji Hyung;Yang, Yoon-Sil;Kang, Moon-Seok;Jung, Sung-Cherl;Park, Joo Min;Yoo, Eun-Sook;Kim, Seong-Ho;Ahn Jo, Sangmee;Suk, Kyoungho;Eun, Su-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.219-228
    • /
    • 2015
  • Excessive microglial activation and subsequent neuroinflammation lead to synaptic loss and dysfunction as well as neuronal cell death, which are involved in the pathogenesis and progression of several neurodegenerative diseases. Thus, the regulation of microglial activation has been evaluated as effective therapeutic strategies. Although dieckol (DEK), one of the phlorotannins isolated from marine brown alga Ecklonia cava, has been previously reported to inhibit microglial activation, the molecular mechanism is still unclear. Therefore, we investigated here molecular mechanism of DEK via extracellular signal-regulated kinase (ERK), Akt and nicotinamide adenine dinuclelotide phosphate (NADPH) oxidase-mediated pathways. In addition, the neuroprotective mechanism of DEK was investigated in microglia-mediated neurotoxicity models such as neuron-microglia co-culture and microglial conditioned media system. Our results demonstrated that treatment of anti-oxidant DEK potently suppressed phosphorylation of ERK in lipopolysaccharide (LPS, $1{\mu}g/ml$)-stimulated BV-2 microglia. In addition, DEK markedly attenuated Akt phosphorylation and increased expression of $gp91^{phox}$, which is the catalytic component of NADPH oxidase complex responsible for microglial reactive oxygen species (ROS) generation. Finally, DEK significantly attenuated neuronal cell death that is induced by treatment of microglial conditioned media containing neurotoxic secretary molecules. These neuroprotective effects of DEK were also confirmed in a neuron-microglia co-culture system using enhanced green fluorescent protein (EGFP)-transfected B35 neuroblastoma cell line. Taken together, these results suggest that DEK suppresses excessive microglial activation and microglia-mediated neuronal cell death via downregulation of ERK, Akt and NADPH oxidase-mediated pathways.

Carbon Metabolism and Its Global Regulation in Corynebacterium glutamicum (Corynebacterium glutamicum의 탄소대사 및 총체적 탄소대사 조절)

  • Lee, Jung-Kee
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.349-361
    • /
    • 2010
  • In this review, the current knowledge of the carbon metabolism and global carbon regulation in Corynebacterium glutamicum are summarized. C. gluamicum has phosphotransferase system (PTS) for the utilization of sucrose, glucose, and fructose. C. glutamicum does not show any preference for glucose when various sugars or organic acids are present with glucose, and thus cometabolizes glucose with other sugars or organic acids. The molecular mechanism of global carbon regulation such as carbon catabolite repression (CCR) in C. glutamicum is quite different to that in Gram-negative or low-GC Gram-positive bacteria. GlxR (glyoxylate bypass regulator) in C. glutamicum is the cyclic AMP receptor protein (CRP) homologue of E. coli. GlxR has been reported to regulate genes involved in not only glyoxylate bypass, but also central carbon metabolism and CCR including glycolysis, gluconeogenesis, and tricarboxylic acid (TCA) cycle. Therefore, GlxR has been suggested as a global transcriptional regulator for the regulation of diverse physiological processes as well as carbon metabolism. Adenylate cyclase of C. glutamicum is a membrane protein belonging to class III adenylate cyclases, thus it could possibly be a sensor for some external signal, thereby modulating cAMP level in response to environmental stimuli. In addition to GlxR, three additional transcriptional regulators like RamB, RamA, and SugR are also involved in regulating the expression of many genes of carbon metabolism. Finally, recent approaches for constructing new pathways for the utilization of new carbon sources, and strategies for enhancing amino acid production through genetic modification of carbon metabolism or regulatory network are described.

Silica Nanoparticles Suppress the Root Rot of Panax ginseg from Ilyonectria mors-panacis Infection by Reducing Sugar Efflux into Apoplast

  • Abbai, Ragavendran;Ahn, Jong-Chan;Mohanan, Padmanaban;Mathiyalagan, Ramya;Gokulanathan, Anandapadmanaban;Kim, Yu-Jin;Kim, Yoen-Ju;Yang, Deok-Chun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.59-59
    • /
    • 2018
  • Panax ginseng Meyer (Korean ginseng) is in the spotlight of Oriental medicine and is proclaimed as the king of medicinal plants owing to its adaptogenic characteristics. Ginseng root rot is a devastating disease caused by the fungus, Ilyonectria mors-panacis that generally attacks younger roots (~2 years), leading to defects in root quality, ginsenoside accumulation and also life cycle of the plant. Hence, there is an indispensable need to develop strategies resulting in tolerance against ginseng root rot. In the present study, we evaluated the effect of silica nanoparticles(N-SiO2) in Panax ginseng during I. mors-panacis infection. Long term analysis (30 dpi) revealed a striking 50% reduction in disease severity index upon 1mM and 2mM treatment of N-SiO2. However, N-SiO2 did not have any direct antifungal activity against I. mors-panacis. Membrane bound sugar efflux transporter, SWEET (Sugars Will Eventually be Exported Transporters) was identified in ginseng and as expected, its expression was suppressed upon N-SiO2 treatment in the root rot pathosystem. Furthermore, the total and reducing sugars in the apoplastic fluid clearly revealed that N-SiO2 regulates sugar efflux into apoplast. In a nut shell, N-SiO2 administration induces transcriptional reprogramming in ginseng roots, leading to regulated sugar efflux into apoplast resulting in enhanced tolerance against I. mors-panacis.

  • PDF

Acceleration of DNCB-induced Early-apoptosis via Activation of Corticotropin Releasing Factor in the Hair Root of NC/Nga Mice (DNCB로 유도된 NC/Nga 아토피피부염마우스에서 부신피질자극호르몬방출인자 활성에 따른 모발세포의 초기세포사멸 연구)

  • Park, Gunhyuk;Jang, Eunyoung;Kim, Seongbae;Han, Eunyoung;Kim, Yong-ung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.4
    • /
    • pp.281-287
    • /
    • 2017
  • Stress in skin plays a significant role in both the direct/indirect regulation of cellular processes occurring in hair, which in turn affect the hair cycle. However, experimental data regarding the effects of stress-related corticotropin releasing factor (CRF) released by stress on the apoptotic process involved in hair is limited. Therefore, we investigated the acceleration of early-stage apoptosis induced by atopy-related stress using a 2,4-dinitrochlorobenzene NC/Nga mice model. Expression of CRF, its related proteins, annexin V, and mitochondrial dysfunction were measured by immunohistochemical analyses. Atopic stress strongly stimulated stress hormones response, such as CRF and adrenocorticotropic hormone, in outer epithelial sheath of the hair. Moreover, its stress induced mitochondrial damage and early-stage apoptosis of cells in hair root. These findings suggest that hair damage due to apoptosis in atopy model is accelerated in a high CRF environment. Importantly, the effect of stress-related CRF on apoptosis processes involved in atopy dermatitis-related hair loss, suggests that the CRF-regulating development or maintenance materials may provide effective therapeutic strategies for hair health.

Inhibition of SIRT1 Sensitizes TRAIL-Resistant MCF-7 Cells by Upregulation of DR5 and Inhibition of c-FLIP (SIRT1 억제에 의한 DR5 발현증강과 c-FLIP 발현저해 작용으로 사람유방암세포 MCF-7의 TRAIL 감수성 증강)

  • Lee, Su-Hoon;Kim, Hak-Bng;Kim, Mi-Ju;Lee, Jae-Won;Bae, Jae-Ho;Kim, Dong-Wan;Kang, Chi-Dug;Kim, Sun-Hee
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1277-1285
    • /
    • 2012
  • The tumor necrosis, factor-related, apoptosis-inducing ligand (TRAIL) is regarded as a potentially useful anticancer agent with excellent selectivity for cancer cells. However, a considerable number of cancer cells are resistant to apoptosis induction by TRAIL. Developing strategies to overcome this resistance are important for the successful use of TRAIL for cancer therapy. Here, we revealed that siRNA-mediated downregulation of SIRT1 or SIRT1 inhibitor Amurensin G upregulated DR5 and c-Myc and downregulated c-$FLIP_{L/S}$ and Mcl-1, which was associated with sensitization of TRAIL-resistant MCF-7 cells to TRAIL. This result was followed by the activation of caspases, PARP cleavage, and downregulation of Bcl-2 in both TRAIL-treated MCF-7 cells transfected with SIRT1 siRNA and cells co-treated with Amurensin G and TRAIL. Our results suggest that the induction of DR5 and downregulation of c-FLIP via suppression of SIRT1 expression may be a useful strategy to increase the susceptibility of TRAIL-resistant cancer cells to TRAIL-induced cell death.