Transcriptional and Nontranscriptional Regulation of NIS Activity and Radioiodide Transport

NIS 기능의 전사 및 전사외 조절과 방사성옥소 섭취

  • Jung, Kyung-Ho (Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Lee, Kyung-Han (Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • 정경호 (성균관대학교 의과대학 삼성서울병원 핵의학과) ;
  • 이경한 (성균관대학교 의과대학 삼성서울병원 핵의학과)
  • Published : 2007.10.31

Abstract

Radioiodide transport has been extensively and successfully used in the evaluation and management of thyroid disease. The molecular characterization of the sodium/iodide symporter (NIS) and cloning of the NIS gene has led to the recent expansion of the use of radioiodide to cancers of the breast and other nonthyroidal tissues exogenously transduced with the NIS gene. More recently, discoveries regarding the functional analysis and regulatory processes of the NIS molecule are opening up exciting opportunities for new research and applications for NIS and radio iodide. The success of NIS based cancer therapy is dependent on achievement of maximal radioiodide transport sufficient to allow delivery of effective radiation doses. This in turn relies on high transcription rates of the NIS gene. However, newer discoveries indicate that nontranscriptional processes that regulate NIS trafficking to cell membrane are also critical determinants of radioiodide uptake. In this review, molecular mechanisms that underlie regulation of NIS transcription and stimuli that augment membrane trafficking and functional activation of NIS molecules will be discussed. A better understanding of how the expression and cell surface targeting of NIS proteins is controlled will hopefully aid in optimizing NIS gene based cancer treatment as well as NIS based reporter-gene imaging strategies.

방사성옥소는 갑상선암의 핵의학적 영상과 방사성치료에 널리 그리고 성공적으로 사용되어 왔다. 최근 세포의 옥소섭취를 담당하는 운반체로서 Na/I symporter (NIS)의 분자세포학적 특성이 규명되고 그 유전자가 클로닝되면서 앞으로는 갑상선암 이외의 각종 암에도 NIS 유전자를 외부에서 전달함으로써 방사성옥소 치료를 적용하는 새로운 암치료 기술이 가능할 것으로 기대되고 있다. 방사성옥소를 이용한 암치료의 성공을 위해서는 NIS를 통한 표적세포의 옥소 섭취를 극대화 시키는 것이 핵심이다. TSH는 갑상선 세포의 NIS 발현을 항진시키고 retinoic acid는 갑상선암과 유방암 세포의 NIS발현을 증가시키는 효과가 있다. 또 일반 암세포에는 NIS 유전자를 전달하여 발현 시킬 수 있다. 그러나 NIS 발현 만으로는 원하는 수준의 방사성옥소 섭취를 충분히 얻지 못할 수 있다. 이는 세포의 옥소 섭취가 NIS 단백질의 총량이 아니라 세포막에 위치한 NIS의 양에 의해 결정되기 때문이다. 즉, 옥소를 섭취하려는 전사된 NIS단백질이 세포막으로 이동하여 정상적으로 기능하게 하는 조절 기전이 중요하다. NIS의 세포막 이동 기전은 아직 밝혀져 있지 않으나 다른 운반체와 유사하게 단백질의 전사후 glycosylation이나 phosphorylation이 관여할 것으로 생각된다. 본 연구진은 NIS 유전자를 전달한 암세포에서epidermal growth factor를 통한 extracellular signal regulated kinase 신호경로의 활성화가 방사성옥소 섭취를 항진시킴을 관찰하여 NIS의 전사외 기능조절 기전을 조사하고 있다. 앞으로 NIS기능에 대한 조절기전이 보다 자세하게 밝혀지면 방사성옥소 치료기술과 NIS유전자 영상기술의 개선과 발전에 도움이 될 것으로 기대된다.

Keywords

References

  1. Dohan O, De la Vieja A, Paroder V, Riedel C, Artani M, Reed M, et al. The sodium/iodide symporter (NIS): characterization, regulation, and medical significance. Endocr Rev 2003;24:48-77 https://doi.org/10.1210/er.2001-0029
  2. Riesco-Eizaguirre G, Santisteban P. A perspective view of sodium iodide symporter research and its clinical implications. Eur J Endocrinol 2006;155:495-512 https://doi.org/10.1530/eje.1.02257
  3. Kogai T, Taki K, Brent GA. Enhancement of sodium/iodide symporter expression in thyroid and breast cancer. Endocr Relat Cancer 2006;13:797-826 https://doi.org/10.1677/erc.1.01143
  4. Tazebay UH, Wapnir IL, Levy O, Dohan O, Zuckier LS, Zhao QH, et al. The mammary gland iodide transporter is expressed during lactation and in breast cancer. Nat Med 2000;6:871-8 https://doi.org/10.1038/78630
  5. Moon DH, Lee SJ, Park KY, Park KK, Ahn SH, Pai MS, et al. Correlation between 99mTc-pertechnetate uptakes and expressions of human sodium iodide symporter gene in breast tumor tissues. Nucl Med Biol 2001;28:829-34 https://doi.org/10.1016/S0969-8051(01)00243-8
  6. Boelaert K, Franklyn JA. Sodium iodide symporter: a novel strategy to target breast, prostate, and other cancers? Lancet 2003;361:796-7 https://doi.org/10.1016/S0140-6736(03)12720-1
  7. Mandell RB, Mandell LZ, Link Jr CJ. Radioisotope concentrator gene therapy using the sodium/iodide symporter gene. Cancer Res 1999;59:661-8
  8. Spitzweg C, O'Connor MK, Bergert ER, Tindall DJ, Young CY, Morris JC. Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter. Cancer Res 2000;15:6526-30
  9. Spitzweg C, Dietz AB, O'Connor MK, Bergert ER, Tindall DJ, Young CY, et al. In vivo sodium iodide symporter gene therapy of prostate cancer. Gene Ther 2001;8:1524-31 https://doi.org/10.1038/sj.gt.3301558
  10. Dingli D, Bergert ER, Bajzer Z, O'Connor MK, Russell SJ, Morris JC. Dynamic iodide trapping by tumor cells expressing the thyroidal sodium iodide symporter. Biochem Biophys Res Commun 2004;325:157-66 https://doi.org/10.1016/j.bbrc.2004.09.219
  11. Faivre J, Clerc J, Gerolami R, Herve J, Longuet M, Liu B, R, et al. Longterm radioiodine retention and regression of liver cancer after sodium iodide symporter gene transfer in Wistar rats. Cancer Res 2004;64:8045-51 https://doi.org/10.1158/0008-5472.CAN-04-0893
  12. Levy O, Dai G, Riedel C, Ginter CS, Paul EM, Lebowitz AN, et al. Characterization of the thyroid Na/iodide symporter with an anti-COOH terminus antibody. Proc Natl Acad Sci USA 1997;94: 5568-73
  13. Weiss SJ, Philp NJ, Ambesi-Impiombato FS, Grollman EF. Thyrotropin-stimulated iodide transport mediated by adenosine 3',5'- monophosphate and dependent on protein synthesis. Endocrinology 1984;114:1099-107 https://doi.org/10.1210/endo-114-4-1099
  14. Kogai T, Endo T, Saito T, Miyazaki A, Kawaguchi A, Onaya T. Regulation by thyroid-stimulating hormone of sodium/iodide symporter gene expression and protein levels in FRTL-5 cells. Endocrinology 1997;138:2227-32 https://doi.org/10.1210/en.138.6.2227
  15. Ohno M, Zannini M, Levy O, Carrasco N, Di Lauro R. The paired-domain transcription factor Pax8 binds to the upstream enhancer of the rat sodium/iodide symporter gene and participates in both thyroid-specific and cyclic-AMP-dependent transcription. Mol Cell Biol 1999;19:2051-60 https://doi.org/10.1128/MCB.19.3.2051
  16. Schmutzler C, Winzer R, Meissner-Weigl J, Kohrle J. Retinoic acid increases sodium/iodide symporter mRNA levels in human thyroid cancer cell lines and suppresses expression of functional symporter in nontransformed FRTL-5 rat thyroid cells. Biochem Biophys Res Commun 1997;240:832-8 https://doi.org/10.1006/bbrc.1997.7715
  17. Simon D, Korber C, Krausch M, Segering J, Groth P, Gorges R, et al. Clinical impact of retinoids in redifferentiation therapy of advanced thyroid cancer: final results of a pilot study. Eur J Nucl Med Mol Imaging 2002;29:775-82 https://doi.org/10.1007/s00259-001-0737-6
  18. Rasmussen AK, Kayser L, Feldt-Rasmussen U. Influence of tumor necrosis factor-$\alpha$, tumor necrosis factor-$ \beta$ and interferon-$\gamma$,separately and added together with interleukin-$ \beta$1, on the function of cultured human thyroid cells. J Endocrinol 1994;143:359-65 https://doi.org/10.1677/joe.0.1430359
  19. Ajjan RA, Watson PF, Findlay C, Metcalfe RA, Crisp M, Ludgate M, Weetman AP. The sodium iodide symporter gene and its regulation by cytokines found in autoimmunity. J Endocrinol 1998158:351-8 https://doi.org/10.1677/joe.0.1580351
  20. Pekary AE, Hersham JM. Tumor necrosis factor, ceramide, transforming growth factor-$\beta$1, and aging reduce Na/iodide symporter messenger ribonucleic acid levels in FRTL-5 cells. Endocrinology 1998;139:703-12 https://doi.org/10.1210/en.139.2.703
  21. Kogai T, Schultz JJ, Johnson LS, Huang M, Brent GA. Retinoic acid induces sodium/iodide symporter gene expression and radioiodide uptake in the MCF-7 breast cancer cell line. Proc Natl Acad Sci USA 2000;97:8519-24 https://doi.org/10.1073/pnas.140217197
  22. Kogai T, Kanamoto Y, Che LH, Taki K, Moatamed F, Schultz JJ, et al. Systemic retinoic acid treatment induces sodium/iodide symporter expression and radioiodide uptake in mouse breast cancer models. Cancer Res 2004;64:415-22 https://doi.org/10.1158/0008-5472.CAN-03-2285
  23. Kogai T, Kanamoto Y, Li AI, Che LH, Ohashi E, Taki K, et al. Differential regulation of sodium/iodide symporter (NIS) gene expression by nuclear receptor ligands in MCF-7 breast cancer cells. Endocrinology 2005;146:3059-69 https://doi.org/10.1210/en.2004-1334
  24. Cho JY, Leveille R, Kao R, Rousset B, Parlow AF, Burak WE, et al. Hormonal regulation of radioiodide uptake activity and NaC/IK symporter expression in mammary glands. J Clinical Endocrinol Metab 2000;85:2936-43 https://doi.org/10.1210/jc.85.8.2936
  25. Knostman KA, Cho JY, Ryu KY, Lin X, McCubrey JA, Hla T, et al. Signaling through 30,50-cyclic adenosine monophosphate and phosphoinositide- 3 kinase induces sodium/iodide symporter expression in breast cancer. J Clinical Endocrinol Metab 2004;89:5196- 203 https://doi.org/10.1210/jc.2004-0907
  26. Lim SJ, Paeng JC, Kim SJ, Kim SY, Lee H, Moon DH. Enhanced expression of adenovirus-mediated sodium iodide symporter gene in MCF-7 breast cancer cells with retinoic acid treatment. J Nucl Med 2007;43:398-404
  27. Riedel C, Levy O, Carrasco N. Post-transcriptional regulation of the sodium/iodide symporter by thyrotropin. J Biol Chem 2001;276: 21458-63 https://doi.org/10.1074/jbc.M100561200
  28. Castro MR, Bergert ER, Goellner JR, Hay ID, Morris JC. Immunohistochemical analysis of sodium iodide symporter expression in metastatic differentiated thyroid cancer: correlation with radioiodine uptake. J Clin Endocrinol Metab 2001;86:5627-32 https://doi.org/10.1210/jc.86.11.5627
  29. Tonacchera M, Viacava P, Agretti P, de Marco G, Perri A, di Cosmo C, et al. Benign nonfunctioning thyroid adenomas are characterized by a defective targeting to cell membrane or a reduced expression of the sodium iodide symporter protein. J Clin Endocrinol Metab 2002;87:352-7 https://doi.org/10.1210/jc.87.1.352
  30. Pohlenz J, Duprez L, Weiss RE, Vassart G, Refetoff S, Costagliola S. Failure of membrane targeting causes the functional defect of two mutant sodium iodide symporters. J Clin Endocrinol Metab 2000;85:2366-9 https://doi.org/10.1210/jc.85.7.2366
  31. Kaminsky SM, Levy O, Salvador C, Dai G, Carrasco N. Na/iodide symporter activity is present in membrane vesicles from thyrotropin-deprived non-iodide-transporting cultured thyroid cells. Proc Natl Acad Sci USA 1994;91:3789-93
  32. Ramamoorthy S, Blakely RD. Phosphorylation and sequestration of serotonin transporters differentially modulated by psychostimulants. Science 1999;285:763-6 https://doi.org/10.1126/science.285.5428.763
  33. Fanning AS, Anderson JM. PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane. J Clin Invest 1999;103:767-72 https://doi.org/10.1172/JCI6509
  34. Riedel C, Levy O, Carrasco N. Post-transcriptional regulation of the sodium/iodide symporter by thyrotropin. J Biol Chem 2001;276: 21458-63 https://doi.org/10.1074/jbc.M100561200
  35. Heltemes LM, Hagan CR, Mitrofanova EE, Panchal RG, Guo J, Link CJ. The rat sodium iodide symporter gene permits more effective radioisotope concentration than the human sodium iodide symporter gene in human and rodent cancer cells. Cancer Chem 2003;273:22657-63
  36. Zhang Z, Liu Y-Y, Jhiang SM. Cell Surface Targeting Accounts for the Difference in Iodide Uptake Activity between Human Na+/I- Symporter and Rat Na+/I- Symporter. J Clin Endocrinol Metab 2005;90:6131-40 https://doi.org/10.1210/jc.2005-0895
  37. Jung K-H, Bae J-S, Paik J-Y, Ko B-H, Lee EJ, Choi JY, Choi Y, Choe YS, Kim B-T, Lee K-H. Radioiodide Transport Activity of the Na/I Symporter is Post-transcriptionally Upregulated by Activation of the MAP-Kinase Pathway Trough EGF Stimulation. Proc Soc Mol Imag Annual Meeting 2007;P319
  38. Iacovelli L, Capobianco L, Salvatore L, Sallese M, D'Ancona GM, De Blasi A. Thyrotropin activates mitogenactivated protein kinase pathway in FRTL-5 by a cAMPdependent protein kinase A-independent mechanism. Molecular Pharmacology 2001;60:924-33 https://doi.org/10.1124/mol.60.5.924