DOI QR코드

DOI QR Code

Cisplatin Suppresses Proliferation of Ovarian Cancer Cells through Inhibition Akt and Modulation MAPK Pathways

Cisplatin의 난소암 세포 증식 억제에 관한 신호 전달 기전

  • Choi, Jae-Sun (Department of Biomedical Laboratory Science, Far East University)
  • Received : 2020.01.07
  • Accepted : 2020.02.03
  • Published : 2020.03.31

Abstract

Cisplatin (CDDP) is a chemotherapy agent used for patients with ovarian cancers. CDDP activates multiple signaling pathways, which causes various cellular reactions according to the type of cancer cells. Therefore, it is difficult to clearly conclude its signaling pathways. The purpose of this study is to determine the role of the signal protein of Akt/ERK1/2 and MAPK by CDDP-induced apoptosis in ovarian cancer cells (SKOV3). As a result, the number of apoptosis increased according to the TUNEL assay, and flow cytometric analysis confirmed that the percentage of sub-G1 early apoptosis was 8.73% higher than the control. The PARP and caspase-3 activity that appeared in the process of apoptosis was increased and the Bcl-2 expression was decreased. It was verified that the Akt and ERK1/2 activity was decreased, and p38 and JNK activity increased in a time dependent fashion. In conclusion, these results demonstrate that cisplatin inhibits the proliferation of ovarian cancer cells by inhibiting Akt activity and induces apoptosis by modulating the MAPK signaling pathway. However, a decrease in the ERK1/2 activity by CDDP was the opposite result to the result shown from the HeLa cells. For this reason, further research on signaling pathways is necessary. These results are expected to be useful for ovarian cancer treatment strategies targeting the MAPK pathway.

Cisplatin (CDDP)은 난소암 치료에 사용되는 화학 요법제로 암세포에 따라 그리고 치료 용량에 따라 다중 신호경로를 활성화하여 세포 반응을 다르게 일으킬 수 있다. Cisplatin이 세포에 작용하는 신호전달 기전은 분명하지 않아 더 많은 연구가 필요해 보인다. 이에 본 연구는 cisplatin을 난소암 세포(SKOV3)에 처리하여 세포사멸 유도 과정에서 나타나는 신호 단백질의 역할을 밝히고자 하였다. 결과는 cisplatin으로 처리한 난소암 세포에서 TUNEL assay와 유세포 분석을 통해 대조군과 비교하여 세포 사멸수가 증가하였다. 세포 사멸 단계에서 나타나는 PARP 및 caspase-3 활성도 증가하였다. 그러나 Bcl-2의 발현은 감소하였다. 신호 전달 경로에서 나타나는 단백질의 발현은 ERK1/2의 활성은 시간 의존적으로 감소하였으나 Akt 활성은 24시간에 감소하다 48시간에서의 활성은 일정하였다. p38과 p-JUN의 활성은 24시간에 증가하는 것으로 나타났으나 48시간에서 p38의 활성은 감소하였으며 p-JUN의 활성은 일정하였다. 이상의 결과들을 토대로 결론은 cisplatin이 SKOV3 세포에서 Akt 활성을 감소하여 세포 증식을 억제하고 MAPK의 p38 발현을 조절하여 세포사멸을 유도하는 것으로 판단된다. 향후, 암치료 전략에 도움이 되는 cisplatin을 포함한 백금기반 화학요법제의 신호전달 기전을 밝히기 위한 더 많은 연구가 필요할 것으로 생각된다. 본 실험을 통해 제시한 결과는 MAPK 신호 경로를 타겟으로 하는 암 치료 전략에 유용하게 사용 될 수 있기를 기대한다.

Keywords

References

  1. Cho KR, Shih IeM. Ovarian cancer. Annu Rev Pathol. 2009;4:287-313. https://doi.org/10.1146/annurev.pathol.4.110807.092246
  2. Swisher EM, Taniguchi T, Karlan BY. Molecular scores to predict ovarian cancer outcomes: a worthy goal, but not ready for prime time. J Natl Cancer Inst. 2012;104:642-645. https://doi.org/10.1093/jnci/djs203
  3. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2018;68:7-30. https://doi.org/10.3322/caac.21442
  4. Frezza M, Hindo S, Chen D, Davenport A, Schmitt S, Tomco D, et al. Novel metals and metal complexes as platforms for cancer therapy. Curr Pharm Des. 2010;16:1813-1825. https://doi.org/10.2174/138161210791209009
  5. Chen D, Milacic V, Frezza M, Dou QP. Metal complexes, their cellular targets and potential for cancer therapy. Curr Pharm Des. 2009;15:777-791. https://doi.org/10.2174/138161209787582183
  6. Goldstein P. Controlling cell death. Science. 1997;275:1081-1082. https://doi.org/10.1126/science.275.5303.1081
  7. Yuan ZQ, Sun M, Feldman RI, Wang G, Ma X, Jiang C, et al. Frequent activation of AKT2 and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase/Akt pathway in human ovarian cancer. Oncogene. 2000;19:2324-2330. https://doi.org/10.1038/sj.onc.1203598
  8. Lasky T, Silbergeld E. P53 mutations associated with breast, colorectal, liver, lung, and ovarian cancers. Environ Health Perspect. 1996;104:1324-1331. https://doi.org/10.1289/ehp. 961041324
  9. Kulik G, Weber MJ. Akt-dependent and -independent survival signaling pathways utilized by insulin-like growth factor I. Mol Cell Biol. 1998;18:6711-6718. https://doi.org/10.1128/mcb.18.11.6711
  10. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 1998;95:29-39. https://doi.org/10.1016/s0092-8674(00)81780-8
  11. Gu J, Tamura M, Yamada KM. Tumor suppressor PTEN inhibits integrin-and growth factor-mediated mitogen-activated protein (MAP) kinase signaling pathways. J Cell Biol. 1998;143:1375-1383. https://doi.org/10.1083/jcb.143.5.1375
  12. Ip YT, Davis RJ. Signal transduction by the c-Jun N-terminal kinase (JNK)-from inflammation to development. Curr Opin Cell Biol. 1998;10:205-219. https://doi.org/10.1016/s0955-0674(98)80143-9
  13. Karin M. Mitogen-activated protein kinase cascades as regulators of stress responses. Ann N Y Acad Sci. 1998;30:139-146. https://doi.org/10.1111/j.1749-6632.1998.tb08987.x
  14. Wang X, Martindale JL, Holbrook NJ. Requirement for ERK activation in cisplatin-induced apoptosis. J Biol Chem. 2000;275:39435-39443. https://doi.org/10.1074/jbc.M004583200
  15. Tang MK, Zhou HY, Yam JW, Wong AS. c-Met over expression contributes to the acquired apoptotic resistance of nonadherent ovarian cancer cells through a cross talk mediated by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2. Neoplasia. 2010;12:128-138. https://doi.org/10.1593/neo.91438
  16. Chen G, Gong M, Yan M, Zhang X. Sevoflurane induces endoplasmic reticulum stress mediated apoptosis in hippocampal neurons of aging rats. PLoS ONE. 2013;8:E57870. https://doi.org/10.1371/journal.pone.0057870
  17. Salvesen GS, Dixit VM. Caspases: intracellular signaling by proteolysis. Cell. 1997;91:443-446. https://doi.org/10.1016/s0092-8674(00)80430-4
  18. Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 2006;25:4798-4811. https://doi.org/10.1038/sj.onc.1209608
  19. Salvesen GS, Abrams JM. Caspase activation-stepping on the gas or releasing the brakes? Lessons from humans and flies. Oncogene. 2004;23:2774-2784. https://doi.org/10.1038/sj.onc.1207522
  20. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35:495-516. https://doi.org/10.1080/01926230701320337
  21. Cohen TT. Apoptosis. Immunol. 1993;14:126-130. https://doi.org/10.1016/0167-5699(93)90214-6
  22. Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG. Specific proteolytic cleavage of poly (ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 1993;53:3976-3985.
  23. Muscella A, Calabriso N, Fanizzi FP, De Pascali SA, Urso L, Ciccarese A, et al. Pt [(O,O'-acac)(gamma-acac)(DMS)], a new Pt compound exerting fast cytotoxicity in MCF-7 breast cancer cells via the mitochondrial apoptotic pathway. Br J Pharmacol. 2008;153:34-49. https://doi.org/10.1038/sj.bjp.0707576
  24. Hail N Jr, Lotan R. Cancer chemoprevention and mitochondria: targeting apoptosis in transformed cells via the disruption of mitochondrial bioenergetics/redox state. Mol Nutr Food Res. 2009;53:49-67. https://doi.org/10.1002/mnfr.200700527
  25. Qian W, Nishikawa M, Haque AM, Hirose M, Mashimo M, Sato E, et al. Mitochondrial density determines the cellular sensitivity to cisplatin-induced cell death. Am J Physiol Cell Physiol. 2005;289:C1466-1475. https://doi.org/10.1152/ajpcell.00265.2005
  26. Siddik ZH. Cisplatin: mode of cytoxic action and molecular basis of resistance. Oncogene. 2003;22:7265-7279. https://doi.org/10.1038/sj.onc.1206933
  27. Park SJ, Kim IS. The role of p38 MAPK activation in auranofin-induced apoptosis of human promyelocytic leukaemia HL-60 cells. Br J Pharmacol. 2005;146:506-513. https://doi.org/10.1038/sj.bjp.0706360
  28. Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009;9:537-549. https://doi.org/10.1038/nrc2694
  29. Bulavin DV, Fornace AJ. p38 MAP kinase's emerging role as a tumor suppressor. Adv Cancer Res. 2004;92:95-118. https://doi.org/10.1016/S0065-230X(04)92005-2
  30. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410:37-40. https://doi.org/10.1038/35065000
  31. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298:1911-1912. https://doi.org/10.1126/science.1072682
  32. Brazil DP, Hemmings BA. Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci. 2001;26:657-664. https://doi.org/10.1016/s0968-0004(01)01958-2
  33. Kwon HW, Lee DH. The Inhibitory effects of cordycepin on phosphoproteins including PI3K, Akt, and p38. Korean J Clin Lab Sci. 2017;49:99-107. https://doi.org/10.15324/kjcls
  34. Achkar IW, Abdulrahman N, Al-ulaiti H. Joseph JM, Uddin S, Mraiche F. Cisplatin based therapy: the role of the mitogen activated protein kinase signaling pathway. J Transl Med. 2018;16:96. https://doi.org/10.1186/s12967-018-1471-1
  35. Smolle E, Taucher V, Pichler M, Petru E, Lax S, Haybaeck J. Targeting signaling pathways in epithelial ovarian cancer. Int J Mol Sci. 2013;14:9536-9555. https://doi.org/10.3390/ijms14059536