• Title/Summary/Keyword: Exposure Periods

Search Result 262, Processing Time 0.022 seconds

Effects of ammonia gas on soybean plant (대두(大豆)에 대한 Ammonia 가스의 영향)

  • Kim, B.Y.;Han, K.H.;Kim, S.K.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.12 no.2
    • /
    • pp.109-116
    • /
    • 1979
  • This experiment was conducted to find out the effects on soybean plant exposed with various concentration and different fumigation periods of ammonia gas ($0.2mg/{\ell}$). The yield of soybean, nitrogen and, chlorophyll contents in leaves, and percentage of destroyed leaf area were investigated. The results were summarized as: 1. The soybean yield losses and percentage of destroyed leaf area were positively correlated with concentration of inflicting ammonia gas respectively. The yield losses was higher at noon exposure time than at night exposure time. 2. The soybean yield was negatively correlated with the percentage of destroyed leaf area. 3. The highest percentage of destroyed leaf area had at afternoon exposure time (14:00-15:00 o'clock) by $0.2mg/{\ell}$ ammonia gas fumigation, and the lowest one had at midnight exposure time (22:00-23:00 o'clock). 4. According to the increasing concentration of ammonia gas, the total and water soluble nitrogen contents in soybean leaves were increased, but the contents of chlorphyll b on decreasing rate. 5. The nitrogen contents in plant were higher in the afternoon exposure than in the morning, but the contents of chlorophyll were higher at night time exposure than at day time. 6. The highest decreasing of absorption spectra of chlorohpyll in chloroplast had at 10:00-11:00 o'clock on fumigation time and the lowest one had at 22:00-23:00 o'clock.

  • PDF

Effect of Adding Scoria as Cement Replacement on Durability-Related Properties

  • al-Swaidani, Aref Mohamad;Aliyan, Samira Dib
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.2
    • /
    • pp.241-254
    • /
    • 2015
  • A lot of reinforced concrete (RC) structures in Syria went out of service after a few years of construction. This was mainly due to reinforcement corrosion or chemical attack on concrete. The use of blended cements is growing rapidly in the construction industry due to economical, ecological and technical benefits. Syria is relatively rich in scoria. In the study, mortar/concrete specimens were produced with seven types of cement: one plain Portland cement (control) and six blended cements with replacement levels ranging from 10 to 35 %. Rapid chloride penetration test was carried in accordance with ASTM C 1202 after two curing times of 28 and 90 days. The effect on the resistance of concrete against damage caused by corrosion of the embedded steel has been investigated using an accelerated corrosion test by impressing a constant anodic potential. The variation of current with time and time to failure of RC specimens were determined at 28 and 90 days curing. In addition, effects of aggressive acidic environments on mortars were investigated through 100 days of exposure to 5 % $H_2SO_4$, 10 % HCl, 5 % $HNO_3$ and 10 % $CH_3COOH$ solutions. Evaluation of sulfate resistance of mortars was also performed by immersing in 5 % $Na_2SO_4$ solution for 52 weeks. Test results reveal that the resistance to chloride penetration of concrete improves substantially with the increase of replacement level, and the concretes containing scoria based-blended cements, especially CEM II/B-P, exhibited corrosion initiation periods several times longer than the control mix. Further, an increase in scoria addition improves the acid resistance of mortar, especially in the early days of exposure, whereas after a long period of continuous exposure all specimens show the same behavior against the acid attack. According to results of sulfate resistance, CEM II/B-P can be used instead of SRPC in sulfate-bearing environments.

Characteristics of Background Nanoparticle Concentration in a TiO2 Manufacturing Laboratory (TiO2 제조 실험실에서 나노입자의 배경농도 특징)

  • Park, Seung-Ho;Jung, Jae Hee;Lee, Seung-Bok;Bae, Gwi-Nam;Jie, Hyun Seock;Cho, So-Hye
    • Particle and aerosol research
    • /
    • v.7 no.4
    • /
    • pp.113-121
    • /
    • 2011
  • The aerosol nanoparticles are suspected to be exposed to workers in nanomaterial manufacturing facilities. However, the exposure assessment method has not been established. One of important issues is to characterize background level of nanoparticles in workplaces. In this study, intensive aerosol measurements were made at a $TiO_2$ manufacturing laboratory for five consecutive days in May of 2010. The $TiO_2$ nanoparticles were manufactured by the thermal-condensation process in a heated tube furnace. The particle number size distribution was measured using a scanning mobility particle sizer every 5 min, in order to detect particles ranging from 14.5 to 664 nm in diameter. Total particle number concentration shows a severe diurnal variation irrespective of manufacturing process, which was governed by nanoparticles smaller than 50 nm in diameter. During the background monitoring periods, significant peak concentrations were observed between 2 p.m. and 3 p.m. due to the infiltration of secondary aerosol particles formed by photochemical smog. Although significant increase in nanoparticle concentration was also observed during the manufacturing process twice among three times, these particle peak concentrations were lower than those observed during the background measurement. It is suggested that the investigation of background particle contamination is needed prior to conducting main exposure assessment in nanomaterial manufacturing workplaces or laboratories.

Sensitization of Periodontitis Disease Causing Bacteria by Low Power He-Ne Laser Radiation

  • Satsangi, Akash Tripathi;Mathur, Manish;Saxena, Parul;Prasad, Guru;Shrivastava, Jitendra Nath;Shrivastava, Jenendra Nath;Roy, Sukhdev
    • Journal of Photoscience
    • /
    • v.11 no.32
    • /
    • pp.55-59
    • /
    • 2004
  • The present investigation is an attempt to create an optimized protocol for a bactericidal modality of different powers of He-Ne laser radiation to eliminate periodontitis disease causing bacteria from dental plaques. Periodontitis is most prevalent infectious disease of men and caused by a limited number of Gram negative oral bacteria. Porphyromonas gingivalis and Streptococcus sanguis are the important bacteria responsible for periodontitis diseases. Effect on periodontitis disease causing bacteria were produced by the exposure of different powers of He-Ne laser light i.e. 9 mW, 17 mW and 26 mW of red colour of wavelength 632.8 nm in two different periods of time i.e. 10 min. and 20 min. in the presence of dye Methylene blue (MB) used as a photosensitizer. The results have been shown in terms of percentage inhibition of colony forming units (cfu.) of bacteria. This study has shown that maximum inhibition of cfu. were observed in Laser+MB-20 min. exposure time. This inhibition was followed by Laser+MB-10 min., but minimum inhibition was seen in Laser only at 10 min. exposure. In case of effect of methylene alone on the cfu. of bacteria, it was seen that MB have not shown more inhibition of cfu. and it had shown that the no. of cfu. are very similar to that of control. The above observation of the present study was seen in case of every 3 different type of used powers of laser for both the bacteria. Maximum percentage inhibition of cfu. were seen in case of 26mW powers of He-Ne laser, which was 67. 28% to 61.42% for Porphyromonas gingivalis and Streptococcus sanguis respectively. So, increasing the power of laser (safe range for dentistry is 3-30 mW) under conditions shows an increased percentage inhibition of cfu. Thus the present investigation may be a useful adjunct with mechanical debridement in the prevention of recolonization of subgingival lesions by pathogenic microorganisms which are harmful and drug resistant.

  • PDF

NEUROTOXICITY OF TRIMETHYLTIN IN HIPPOCAMPUS: A HYPEREXCITATORY TOXICITY

  • Chang, Louis W.
    • Toxicological Research
    • /
    • v.6 no.2
    • /
    • pp.191-204
    • /
    • 1990
  • Trimethyltin (TMT) induced lesions in the rat hippocampal formation was reviewed. Adult rats were treated with a single dose of 6.0 mg TMT/kg b.w. and were sacrificed between 3-60 days following exposure. On the hippocampal formation, the granule cells of fascia dentata showed early changes which subsided considerably at a later time when the destruction of the pyramidal neurons of the Ammon's horn became increasingly pronounced with time, leading to severe destruction of the structure. It is interesting to note that there was an inverse relationship of pathological involvement between the f.d. granule cells and the Ammon's horn neurons; i.e., when there was a large sparing of the granule cells. there was an extensive damage to the Ammon's horn and vice versa. This inverse relationship was also true between the $CA_3$neurons and the $CA_{1,2}$neurons in the Ammon's horn. Progressive zinc loss, as demonstrated by Timm's method, on the Mossy fibers was also observed. Similar Mossy fiber zinc depletion has been demonstrated in electrical stimulatory excitation condition of the perforant path to the hippocampus. Depletion of corticosterone, an inhibitor to the hippocampal neurons, by means of adrenalectomy will exaggerate the TMT induced hippocampal lesion. Neonatal study revealed that a unique degenerative pattern of the Ammon's horn could be established in accordance with exposure to TMT at specific maturation periods of the fippocampal formation: increasing destruction of the Ammon's horn with increasing synaptogenesis between the f.d. granule cells and the Ammon's horn neurons. Thus it is apparent that the damage of the Ammon's horn, upon exposure to TMT, may depend on the integrity and functional state of the f.d. granule cells. A hyperexcitory scheme and mechanism as the toxicity basis of TMT in the hippocampal formation is proposed and discussed.

  • PDF

Characterization of the UV Oxidation of Raw Natural Rubber Thin Film Using Image and FT-IR Analysis

  • Kim, Ik-Sik;Lee, Bok-Won;Sohn, Kyung-Suk;Yoon, Joohoe;Lee, Jung-Hun
    • Elastomers and Composites
    • /
    • v.51 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Characterization of the UV oxidation for raw natural rubber (NR) was investigated in controlled conditions through image and FT-IR analysis. The UV oxidation was performed on a thin film of natural rubber coated on a KBr window at 254 nm and room temperature to exclude the thermal oxidation. Before or after exposure to UV light, image of the NR thin film was observed at a right or tilted angle. FT-IR absorption spectra were measured in transmission mode with the UV irradiation time. The UV oxidation of NR was examined by the changes of absorption peaks at 3425, 1717, 1084, 1477, 1377, and $833cm^{-1}$ which were assigned to hydroxyl group (-OH), carbonyl group (-C=O), carbon-oxygen bond (-C-O), methylene group $(-CH_2-)$, methyl group $(-CH_3)$, and cis-methine group $(cis-CCH_3=CH-)$, respectively. During the initial exposure period, the results indicated that the appearance of carbonyl group was directly related to the reduction of cis-methine group containing carbon-carbon double bond (-C=C-). Most of aldehydes or ketones from carbon-carbon double bonds were formed very fast by chain scission. A lot of long wide cracks with one orientation at regular intervals which resulted in consecutive chain scission were observed by image analysis. During all exposure periods, on the other hand, it was considered that the continuous increment of hydroxyl and carbonyl group was closely related to the decrement of methylene and methyl group in the allylic position. Therefore, two possible mechanisms for the UV oxidation of NR were suggested.

An Efficient Chloride Ingress Model for Long-Term Lifetime Assessment of Reinforced Concrete Structures Under Realistic Climate and Exposure Conditions

  • Nguyen, Phu Tho;Bastidas-Arteaga, Emilio;Amiri, Ouali;Soueidy, Charbel-Pierre El
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.199-213
    • /
    • 2017
  • Chloride penetration is among the main causes of corrosion initiation in reinforced concrete (RC) structures producing premature degradations. Weather and exposure conditions directly affect chloride ingress mechanisms and therefore the operational service life and safety of RC structures. Consequently, comprehensive chloride ingress models are useful tools to estimate corrosion initiation risks and minimize maintenance costs for RC structures placed under chloride-contaminated environments. This paper first presents a coupled thermo-hydro-chemical model for predicting chloride penetration into concrete that accounts for realistic weather conditions. This complete numerical model takes into account multiple factors affecting chloride ingress such as diffusion, convection, chloride binding, ionic interaction, and concrete aging. Since the complete model could be computationally expensive for long-term assessment, this study also proposes model simplifications in order to reduce the computational cost. Long-term chloride assessments of complete and reduced models are compared for three locations in France (Brest, Strasbourg and Nice) characterized by different weather and exposure conditions (tidal zone, de-icing salts and salt spray). The comparative study indicates that the reduced model is computationally efficient and accurate for long-term chloride ingress modeling in comparison to the complete one. Given that long-term assessment requires larger climate databases, this research also studies how climate models may affect chloride ingress assessment. The results indicate that the selection of climate models as well as the considered training periods introduce significant errors for mid- and long- term chloride ingress assessment.

Light-Induced Degradation of Hydrogenated Amorphous Silicon (광조사에 따른 비정질 실리콘의 열화)

  • 박진석;한민구;이정한
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.5
    • /
    • pp.501-508
    • /
    • 1988
  • This paper presents the light-induced effects on the elelctrical and optical properties of undoped and doped hydrogenated amorphous silicon films. The changes in the conductivities and the activation energies of various types of a-Si:H films due to the prolonged exposure to light have been characterized as a function of deposition conditions and illumination periods. The dark conductivity changes may be quenched for heavier doped a-Si:H films. We have also analyzed the variations of micro-structure of a-Si:H film such as silicon-hydrogen bondings in the rocking and stretching modes utilizing infrared spectroscopy. From the experimental results, it is elucidated that doping effects must be crucial to the degradations of the fundamental properties of a-Si:H due to light-induced effects.

  • PDF

Prediction of Remaining Life for Corroded Pipelines (부식 손상된 파이프라인의 잔존 수명 예측)

  • JIN, Yeung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.4
    • /
    • pp.411-417
    • /
    • 2004
  • Recently, researchers and engineers from, the development of reliability engineering and probability fracture mechanics, have begun to take seriously the reliability analysis and the integrity for a corroded pipeline. Pressurized pipelines containing active corrosion defects increase gradually both in extent, and depth with increased periods of exposure. This causes a reduction of the remaining strength and the carrying capacity of a pipeline; and creates uncertainty about the future capacity. The steps that are necessary in order to assess the integrity of corroded pipelines will be discussed in this paper utilizing results from an actual model.

  • PDF

Comparison of Noise Abatement Policies in Advanced Countries and Korea (선진국과 한국의 소음저감정책 비교)

  • Kang, Dae-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1177-1184
    • /
    • 2011
  • One of the main objectives of noise control act is to define and ensure application and respect of noise exposure limits. Most advanced countries have prepared a legal framework for noise limits either by national laws, ordinances or municipal by-laws. A large number of advaced countries have adopted the Leq index for the main sources of noise(road, railway, industry). The exception is aircraft noise for which regulatory practice is highly disparate. These differences in the indices adopted, the periods and areas to which regulations apply, definitions of measurement conditions and ways in which noise levels are calculated make it difficult to compare the current advanced countries standards. This study presents the current noise abatement policy of the advanced countries and proposes the improvement of the current noise abatement policy of Korea to catch up with it of the advanced countries.